Series Relations
Two Dirichlet series involving the divisor function are:
which for d(n) = σ0(n) gives
and
A Lambert series involving the divisor function is:
for arbitrary complex |q| ≤ 1 and a. This summation also appears as the Fourier series of the Eisenstein series and the invariants of the Weierstrass elliptic functions.
Read more about this topic: Divisor Function
Famous quotes containing the words series and/or relations:
“I thought I never wanted to be a father. A child seemed to be a series of limitations and responsibilities that offered no reward. But when I experienced the perfection of fatherhood, the rest of the world remade itself before my eyes.”
—Kent Nerburn (20th century)
“The interest in life does not lie in what people do, nor even in their relations to each other, but largely in the power to communicate with a third party, antagonistic, enigmatic, yet perhaps persuadable, which one may call life in general.”
—Virginia Woolf (18821941)