Series Relations
Two Dirichlet series involving the divisor function are:
which for d(n) = σ0(n) gives
and
A Lambert series involving the divisor function is:
for arbitrary complex |q| ≤ 1 and a. This summation also appears as the Fourier series of the Eisenstein series and the invariants of the Weierstrass elliptic functions.
Read more about this topic: Divisor Function
Famous quotes containing the words series and/or relations:
“As Cuvier could correctly describe a whole animal by the contemplation of a single bone, so the observer who has thoroughly understood one link in a series of incidents should be able to accurately state all the other ones, both before and after.”
—Sir Arthur Conan Doyle (18591930)
“It is commonplace that a problem stated is well on its way to solution, for statement of the nature of a problem signifies that the underlying quality is being transformed into determinate distinctions of terms and relations or has become an object of articulate thought.”
—John Dewey (18591952)