Divisor Function - Series Relations

Series Relations

Two Dirichlet series involving the divisor function are:

which for d(n) = σ0(n) gives

and

A Lambert series involving the divisor function is:

for arbitrary complex |q| ≤ 1 and a. This summation also appears as the Fourier series of the Eisenstein series and the invariants of the Weierstrass elliptic functions.

Read more about this topic:  Divisor Function

Famous quotes containing the words series and/or relations:

    Every Age has its own peculiar faith.... Any attempt to translate into facts the mission of one Age with the machinery of another, can only end in an indefinite series of abortive efforts. Defeated by the utter want of proportion between the means and the end, such attempts might produce martyrs, but never lead to victory.
    Giuseppe Mazzini (1805–1872)

    Major [William] McKinley visited me. He is on a stumping tour.... I criticized the bloody-shirt course of the canvass. It seems to me to be bad “politics,” and of no use.... It is a stale issue. An increasing number of people are interested in good relations with the South.... Two ways are open to succeed in the South: 1. A division of the white voters. 2. Education of the ignorant. Bloody-shirt utterances prevent division.
    Rutherford Birchard Hayes (1822–1893)