Divisor Function - Series Relations

Series Relations

Two Dirichlet series involving the divisor function are:

which for d(n) = σ0(n) gives

and

A Lambert series involving the divisor function is:

for arbitrary complex |q| ≤ 1 and a. This summation also appears as the Fourier series of the Eisenstein series and the invariants of the Weierstrass elliptic functions.

Read more about this topic:  Divisor Function

Famous quotes containing the words series and/or relations:

    As Cuvier could correctly describe a whole animal by the contemplation of a single bone, so the observer who has thoroughly understood one link in a series of incidents should be able to accurately state all the other ones, both before and after.
    Sir Arthur Conan Doyle (1859–1930)

    It is commonplace that a problem stated is well on its way to solution, for statement of the nature of a problem signifies that the underlying quality is being transformed into determinate distinctions of terms and relations or has become an object of articulate thought.
    John Dewey (1859–1952)