Properties
For a non-square integer every divisor d of n is paired with divisor n/d of n and is then even; for a square integer one divisor (namely ) is not paired with a distinct divisor and is then odd.
For a prime number p,
because by definition, the factors of a prime number are 1 and itself. Also,where pn# denotes the primorial,
since n prime factors allow a sequence of binary selection ( or 1) from n terms for each proper divisor formed.
Clearly, 1 < d(n) < n and σ(n) > n for all n > 2.
The divisor function is multiplicative, but not completely multiplicative. The consequence of this is that, if we write
where r = ω(n) is the number of distinct prime factors of n, pi is the ith prime factor, and ai is the maximum power of pi by which n is divisible, then we have
which is equivalent to the useful formula:
It follows (by setting x = 0) that d(n) is:
For example, if n is 24, there are two prime factors (p1 is 2; p2 is 3); noting that 24 is the product of 23×31, a1 is 3 and a2 is 1. Thus we can calculate d(24) as so:
The eight divisors counted by this formula are 1, 2, 4, 8, 3, 6, 12, and 24.
We also note s(n) = σ(n) − n. Here s(n) denotes the sum of the proper divisors of n, i.e. the divisors of n excluding n itself. This function is the one used to recognize perfect numbers which are the n for which s(n) = n. If s(n) > n then n is an abundant number and if s(n) < n then n is a deficient number.
If n is a power of 2, e.g., then and s(n) = n - 1, which makes n almost-perfect.
As an example, for two distinct primes p and q with p < q, let
Then
and
where φ(n) is Euler's totient function.
Then, the roots of:
allows us to express p and q in terms of σ(n) and φ(n) only, without even knowing n or p+q, as:
Also, knowing n and either σ(n) or φ(n) (or knowing p+q and either σ(n) or φ(n)) allows us to easily find p and q.
In 1984, Roger Heath-Brown proved that
- d(n) = d(n + 1)
will occur infinitely often.
Read more about this topic: Divisor Function
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)