Properties
For a non-square integer every divisor d of n is paired with divisor n/d of n and is then even; for a square integer one divisor (namely ) is not paired with a distinct divisor and is then odd.
For a prime number p,
because by definition, the factors of a prime number are 1 and itself. Also,where pn# denotes the primorial,
since n prime factors allow a sequence of binary selection ( or 1) from n terms for each proper divisor formed.
Clearly, 1 < d(n) < n and σ(n) > n for all n > 2.
The divisor function is multiplicative, but not completely multiplicative. The consequence of this is that, if we write
where r = ω(n) is the number of distinct prime factors of n, pi is the ith prime factor, and ai is the maximum power of pi by which n is divisible, then we have
which is equivalent to the useful formula:
It follows (by setting x = 0) that d(n) is:
For example, if n is 24, there are two prime factors (p1 is 2; p2 is 3); noting that 24 is the product of 23×31, a1 is 3 and a2 is 1. Thus we can calculate d(24) as so:
The eight divisors counted by this formula are 1, 2, 4, 8, 3, 6, 12, and 24.
We also note s(n) = σ(n) − n. Here s(n) denotes the sum of the proper divisors of n, i.e. the divisors of n excluding n itself. This function is the one used to recognize perfect numbers which are the n for which s(n) = n. If s(n) > n then n is an abundant number and if s(n) < n then n is a deficient number.
If n is a power of 2, e.g., then and s(n) = n - 1, which makes n almost-perfect.
As an example, for two distinct primes p and q with p < q, let
Then
and
where φ(n) is Euler's totient function.
Then, the roots of:
allows us to express p and q in terms of σ(n) and φ(n) only, without even knowing n or p+q, as:
Also, knowing n and either σ(n) or φ(n) (or knowing p+q and either σ(n) or φ(n)) allows us to easily find p and q.
In 1984, Roger Heath-Brown proved that
- d(n) = d(n + 1)
will occur infinitely often.
Read more about this topic: Divisor Function
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)