Division (mathematics) - Division in Abstract Algebra

Division in Abstract Algebra

In abstract algebras such as matrix algebras and quaternion algebras, fractions such as are typically defined as or where is presumed an invertible element (i.e., there exists a multiplicative inverse such that where is the multiplicative identity). In an integral domain where such elements may not exist, division can still be performed on equations of the form or by left or right cancellation, respectively. More generally "division" in the sense of "cancellation" can be done in any ring with the aforementioned cancellation properties. If such a ring is finite, then by an application of the pigeonhole principle, every nonzero element of the ring is invertible, so division by any nonzero element is possible in such a ring. To learn about when algebras (in the technical sense) have a division operation, refer to the page on division algebras. In particular Bott periodicity can be used to show that any real normed division algebra must be isomorphic to either the real numbers R, the complex numbers C, the quaternions H, or the octonions O.

Read more about this topic:  Division (mathematics)

Famous quotes containing the words division in, division, abstract and/or algebra:

    Don’t order any black things. Rejoice in his memory; and be radiant: leave grief to the children. Wear violet and purple.... Be patient with the poor people who will snivel: they don’t know; and they think they will live for ever, which makes death a division instead of a bond.
    George Bernard Shaw (1856–1950)

    O, if you raise this house against this house
    It will the woefullest division prove
    That ever fell upon this cursed earth.
    William Shakespeare (1564–1616)

    “If our minds could get hold of one abstract truth, they would be immortal so far as that truth is concerned. My trouble is to find out how we can get hold of the truth at all.”
    Henry Brooks Adams (1838–1918)

    Poetry has become the higher algebra of metaphors.
    José Ortega Y Gasset (1883–1955)