In Computer Arithmetic
The IEEE floating-point standard, supported by almost all modern floating-point units, specifies that every floating point arithmetic operation, including division by zero, has a well-defined result. The standard supports signed zero, as well as infinity and NaN (not a number). There are two zeroes, +0 (positive zero) and −0 (negative zero) and this removes any ambiguity when dividing. In IEEE 754 arithmetic, a ÷ +0 is positive infinity when a is positive, negative infinity when a is negative, and NaN when a = ±0. The infinity signs change when dividing by −0 instead.
The justification for this definition is to preserve the sign of the result in case of arithmetic underflow. For example, in the double-precision computation 1/(x/2), where x = ±2−149, the computation x/2 underflows and produces ±0 with sign matching x, and the result will be ±∞ with sign matching x. The sign will match that of the exact result ±2150, but the magnitude of the exact result is too large to represent, so infinity is used to indicate overflow.
Integer division by zero is usually handled differently from floating point since there is no integer representation for the result. Some processors generate an exception when an attempt is made to divide an integer by zero, although others will simply continue and generate an incorrect result for the division. The result depends on how division is implemented, and can either be zero, or sometimes the largest possible integer.
Because of the improper algebraic results of assigning any value to division by zero, many computer programming languages (including those used by calculators) explicitly forbid the execution of the operation and may prematurely halt a program that attempts it, sometimes reporting a "Divide by zero" error. In these cases, if some special behavior is desired for division by zero, the condition must be explicitly tested (for example, using an if statement). Some programs (especially those that use fixed-point arithmetic where no dedicated floating-point hardware is available) will use behavior similar to the IEEE standard, using large positive and negative numbers to approximate infinities. In some programming languages, an attempt to divide by zero results in undefined behavior.
In two's complement arithmetic, attempts to divide the smallest signed integer by are attended by similar problems, and are handled with the same range of solutions, from explicit error conditions to undefined behavior.
Most calculators will either return an error or state that 1/0 is undefined, however some TI and HP graphing calculators will evaluate (1/0)2 to ∞.
More advanced computer algebra systems will return an infinity as a result for division by zero; for instance, Microsoft Math and Mathematica will show a ComplexInfinity result.
Read more about this topic: Division By Zero
Famous quotes containing the words computer and/or arithmetic:
“The analogy between the mind and a computer fails for many reasons. The brain is constructed by principles that assure diversity and degeneracy. Unlike a computer, it has no replicative memory. It is historical and value driven. It forms categories by internal criteria and by constraints acting at many scales, not by means of a syntactically constructed program. The world with which the brain interacts is not unequivocally made up of classical categories.”
—Gerald M. Edelman (b. 1928)
“Your discovery of the contradiction caused me the greatest surprise and, I would almost say, consternation, since it has shaken the basis on which I intended to build my arithmetic.... It is all the more serious since, with the loss of my rule V, not only the foundations of my arithmetic, but also the sole possible foundations of arithmetic seem to vanish.”
—Gottlob Frege (18481925)