Mathematical Statement
Suppose V is a subset of Rn (in the case of n = 3, V represents a volume in 3D space) which is compact and has a piecewise smooth boundary S. If F is a continuously differentiable vector field defined on a neighborhood of V, then we have
The left side is a volume integral over the volume V, the right side is the surface integral over the boundary of the volume V. The closed manifold ∂V is quite generally the boundary of V oriented by outward-pointing normals, and n is the outward pointing unit normal field of the boundary ∂V. (dS may be used as a shorthand for n dS.) By the symbol within the two integrals it is stressed once more that ∂V is a closed surface. In terms of the intuitive description above, the left-hand side of the equation represents the total of the sources in the volume V, and the right-hand side represents the total flow across the boundary ∂V.
Read more about this topic: Divergence Theorem
Famous quotes containing the words mathematical and/or statement:
“The circumstances of human society are too complicated to be submitted to the rigour of mathematical calculation.”
—Marquis De Custine (1790–1857)
“The force of truth that a statement imparts, then, its prominence among the hordes of recorded observations that I may optionally apply to my own life, depends, in addition to the sense that it is argumentatively defensible, on the sense that someone like me, and someone I like, whose voice is audible and who is at least notionally in the same room with me, does or can possibly hold it to be compellingly true.”
—Nicholson Baker (b. 1957)