Distributivity in Rings
Distributivity is most commonly found in rings and distributive lattices.
A ring has two binary operations (commonly called "+" and "*"), and one of the requirements of a ring is that * must distribute over +. Most kinds of numbers (example 1) and matrices (example 4) form rings. A lattice is another kind of algebraic structure with two binary operations, ∧ and ∨. If either of these operations (say ∧) distributes over the other (∨), then ∨ must also distribute over ∧, and the lattice is called distributive. See also the article on distributivity (order theory).
Examples 4 and 5 are Boolean algebras, which can be interpreted either as a special kind of ring (a Boolean ring) or a special kind of distributive lattice (a Boolean lattice). Each interpretation is responsible for different distributive laws in the Boolean algebra. Examples 6 and 7 are distributive lattices which are not Boolean algebras.
Failure of one of the two distributive laws brings about near-rings and near-fields instead of rings and division rings respectively. The operations are usually configured to have the near-ring or near-field distributive on the right but not on the left.
Rings and distributive lattices are both special kinds of rigs, certain generalizations of rings. Those numbers in example 1 that don't form rings at least form rigs. Near-rigs are a further generalization of rigs that are left-distributive but not right-distributive; example 2 is a near-rig.
Read more about this topic: Distributive Property
Famous quotes containing the word rings:
“She has got rings on every finger,
Round one of them she have got three.
She have gold enough around her middle
To buy Northumberland that belongs to thee.”
—Unknown. Young Beichan (l. 6164)