Distributive Property - Distributivity in Rings

Distributivity in Rings

Distributivity is most commonly found in rings and distributive lattices.

A ring has two binary operations (commonly called "+" and "*"), and one of the requirements of a ring is that * must distribute over +. Most kinds of numbers (example 1) and matrices (example 4) form rings. A lattice is another kind of algebraic structure with two binary operations, ∧ and ∨. If either of these operations (say ∧) distributes over the other (∨), then ∨ must also distribute over ∧, and the lattice is called distributive. See also the article on distributivity (order theory).

Examples 4 and 5 are Boolean algebras, which can be interpreted either as a special kind of ring (a Boolean ring) or a special kind of distributive lattice (a Boolean lattice). Each interpretation is responsible for different distributive laws in the Boolean algebra. Examples 6 and 7 are distributive lattices which are not Boolean algebras.

Failure of one of the two distributive laws brings about near-rings and near-fields instead of rings and division rings respectively. The operations are usually configured to have the near-ring or near-field distributive on the right but not on the left.

Rings and distributive lattices are both special kinds of rigs, certain generalizations of rings. Those numbers in example 1 that don't form rings at least form rigs. Near-rigs are a further generalization of rigs that are left-distributive but not right-distributive; example 2 is a near-rig.

Read more about this topic:  Distributive Property

Famous quotes containing the word rings:

    Ye say they all have passed away,
    That noble race and brave;
    That their light canoes have vanished
    From off the crested wave;
    That, mid the forests where they roamed,
    There rings no hunters’ shout;
    But their name is on your waters,
    Ye may not wash it out.
    Lydia Huntley Sigourney (1791–1865)