Operations On Distributions
Many operations which are defined on smooth functions with compact support can also be defined for distributions. In general, if
is a linear mapping of vector spaces which is continuous with respect to the weak-* topology, then it is possible to extend T to a mapping
by passing to the limit. (This approach works for more general non-linear mappings as well, provided they are assumed to be uniformly continuous.)
In practice, however, it is more convenient to define operations on distributions by means of the transpose (or adjoint transformation) (Strichartz 1994, §2.3; Trèves 1967). If T : D(U) → D(U) is a continuous linear operator, then the transpose is an operator T* : D(U) → D(U) such that
for all φ, ψ ∈ D(U). If such an operator T* exists, and is continuous, then the original operator T may be extended to distributions by defining
Read more about this topic: Distribution (mathematics)
Famous quotes containing the word operations:
“A sociosphere of contact, control, persuasion and dissuasion, of exhibitions of inhibitions in massive or homeopathic doses...: this is obscenity. All structures turned inside out and exhibited, all operations rendered visible. In America this goes all the way from the bewildering network of aerial telephone and electric wires ... to the concrete multiplication of all the bodily functions in the home, the litany of ingredients on the tiniest can of food, the exhibition of income or IQ.”
—Jean Baudrillard (b. 1929)