Distribution (mathematics) - Distributions As Derivatives of Continuous Functions

Distributions As Derivatives of Continuous Functions

The formal definition of distributions exhibits them as a subspace of a very large space, namely the topological dual of D(U) (or S(Rd) for tempered distributions). It is not immediately clear from the definition how exotic a distribution might be. To answer this question, it is instructive to see distributions built up from a smaller space, namely the space of continuous functions. Roughly, any distribution is locally a (multiple) derivative of a continuous function. A precise version of this result, given below, holds for distributions of compact support, tempered distributions, and general distributions. Generally speaking, no proper subset of the space of distributions contains all continuous functions and is closed under differentiation. This says that distributions are not particularly exotic objects; they are only as complicated as necessary.

Tempered distributions

If ƒ ∈ S′(Rn) is a tempered distribution, then there exists a constant C > 0, and positive integers M and N such that for all Schwartz functions φS(Rn)

This estimate along with some techniques from functional analysis can be used to show that there is a continuous slowly increasing function F and a multiindex α such that

Compactly supported distributions

Let U be an open set, and K a compact subset of U. If ƒ is a distribution supported on K, then there is a continuous function F compactly supported in U (possibly on a larger set than K itself) such that

for some multi-index α. This follows from the previously quoted result on tempered distributions by means of a localization argument.

Distributions with point support

If ƒ has support at a single point {P}, then ƒ is in fact a finite linear combination of distributional derivatives of the δ function at P. That is, there exists an integer m and complex constants aα for multi-indices |α| ≤ m such that

where τP is the translation operator.

General distributions

A version of the above theorem holds locally in the following sense (Rudin 1991). Let S be a distribution on U. Then one can find for every multi-index α a continuous function gα such that

and that any compact subset K of U intersects the supports of only finitely many gα; therefore, to evaluate the value of S for a given smooth function f compactly supported in U, we only need finitely many gα; hence the infinite sum above is well-defined as a distribution. If the distribution S is of finite order, then one can choose gα in such a way that only finitely many of them are nonzero.

Read more about this topic:  Distribution (mathematics)

Famous quotes containing the words continuous and/or functions:

    The gap between ideals and actualities, between dreams and achievements, the gap that can spur strong men to increased exertions, but can break the spirit of others—this gap is the most conspicuous, continuous land mark in American history. It is conspicuous and continuous not because Americans achieve little, but because they dream grandly. The gap is a standing reproach to Americans; but it marks them off as a special and singularly admirable community among the world’s peoples.
    George F. Will (b. 1941)

    The mind is a finer body, and resumes its functions of feeding, digesting, absorbing, excluding, and generating, in a new and ethereal element. Here, in the brain, is all the process of alimentation repeated, in the acquiring, comparing, digesting, and assimilating of experience. Here again is the mystery of generation repeated.
    Ralph Waldo Emerson (1803–1882)