Dispersion (optics) - Material Dispersion in Optics

Material Dispersion in Optics

Material dispersion can be a desirable or undesirable effect in optical applications. The dispersion of light by glass prisms is used to construct spectrometers and spectroradiometers. Holographic gratings are also used, as they allow more accurate discrimination of wavelengths. However, in lenses, dispersion causes chromatic aberration, an undesired effect that may degrade images in microscopes, telescopes and photographic objectives.

The phase velocity, v, of a wave in a given uniform medium is given by

where c is the speed of light in a vacuum and n is the refractive index of the medium.

In general, the refractive index is some function of the frequency f of the light, thus n = n(f), or alternatively, with respect to the wave's wavelength n = n(λ). The wavelength dependence of a material's refractive index is usually quantified by its Abbe number or its coefficients in an empirical formula such as the Cauchy or Sellmeier equations.

Because of the Kramers–Kronig relations, the wavelength dependence of the real part of the refractive index is related to the material absorption, described by the imaginary part of the refractive index (also called the extinction coefficient). In particular, for non-magnetic materials (μ = μ0), the susceptibility that appears in the Kramers–Kronig relations is the electric susceptibility .

The most commonly seen consequence of dispersion in optics is the separation of white light into a color spectrum by a prism. From Snell's law it can be seen that the angle of refraction of light in a prism depends on the refractive index of the prism material. Since that refractive index varies with wavelength, it follows that the angle that the light is refracted by will also vary with wavelength, causing an angular separation of the colors known as angular dispersion.

For visible light, refraction indices n of most transparent materials (e.g., air, glasses) decrease with increasing wavelength λ:

or alternatively:

In this case, the medium is said to have normal dispersion. Whereas, if the index increases with increasing wavelength (which is typically the case for X-rays), the medium is said to have anomalous dispersion.

At the interface of such a material with air or vacuum (index of ~1), Snell's law predicts that light incident at an angle θ to the normal will be refracted at an angle arcsin(sin(θ)/n). Thus, blue light, with a higher refractive index, will be bent more strongly than red light, resulting in the well-known rainbow pattern.

Read more about this topic:  Dispersion (optics)

Famous quotes containing the words material and/or dispersion:

    We soon saw, as he saw, that he was not to be pardoned or rescued by men. That would have been to disarm him, to restore to him a material weapon, a Sharp’s rifle, when he had taken up the sword of the spirit,—the sword with which he has really won his greatest and most memorable victories. Now he has not laid aside the sword of the spirit, for he is pure spirit himself, and his sword is pure spirit also.
    Henry David Thoreau (1817–1862)

    The slogan offers a counterweight to the general dispersion of thought by holding it fast to a single, utterly succinct and unforgettable expression, one which usually inspires men to immediate action. It abolishes reflection: the slogan does not argue, it asserts and commands.
    Johan Huizinga (1872–1945)