Dispersion in Waveguides
Optical fibers, which are used in telecommunications, are among the most abundant types of waveguides. Dispersion in these fibers is one of the limiting factors that determine how much data can be transported on a single fiber.
The transverse modes for waves confined laterally within a waveguide generally have different speeds (and field patterns) depending upon their frequency (that is, on the relative size of the wave, the wavelength) compared to the size of the waveguide.
In general, for a waveguide mode with an angular frequency ω(β) at a propagation constant β (so that the electromagnetic fields in the propagation direction (z) oscillate proportional to ), the group-velocity dispersion parameter D is defined as:
where is the vacuum wavelength and is the group velocity. This formula generalizes the one in the previous section for homogeneous media, and includes both waveguide dispersion and material dispersion. The reason for defining the dispersion in this way is that |D| is the (asymptotic) temporal pulse spreading per unit bandwidth per unit distance travelled, commonly reported in ps / nm km for optical fibers.
A similar effect due to a somewhat different phenomenon is modal dispersion, caused by a waveguide having multiple modes at a given frequency, each with a different speed. A special case of this is polarization mode dispersion (PMD), which comes from a superposition of two modes that travel at different speeds due to random imperfections that break the symmetry of the waveguide.
Read more about this topic: Dispersion (optics)
Famous quotes containing the word dispersion:
“The slogan offers a counterweight to the general dispersion of thought by holding it fast to a single, utterly succinct and unforgettable expression, one which usually inspires men to immediate action. It abolishes reflection: the slogan does not argue, it asserts and commands.”
—Johan Huizinga (18721945)