Explanation
Formally, two sets A and B are disjoint if their intersection is the empty set, i.e. if
This definition extends to any collection of sets. A collection of sets is pairwise disjoint or mutually disjoint if, given any two sets in the collection, those two sets are disjoint.
Formally, let I be an index set, and for each i in I, let Ai be a set. Then the family of sets {Ai : i ∈ I} is pairwise disjoint if for any i and j in I with i ≠ j,
For example, the collection of sets { {1}, {2}, {3}, ... } is pairwise disjoint. If {Ai} is a pairwise disjoint collection (containing at least two sets), then clearly its intersection is empty:
However, the converse is not true: the intersection of the collection {{1, 2}, {2, 3}, {3, 1}} is empty, but the collection is not pairwise disjoint. In fact, there are no two disjoint sets in this collection.
A partition of a set X is any collection of non-empty subsets {Ai : i ∈ I} of X such that {Ai} are pairwise disjoint and
Read more about this topic: Disjoint Sets
Famous quotes containing the word explanation:
“What causes adolescents to rebel is not the assertion of authority but the arbitrary use of power, with little explanation of the rules and no involvement in decision-making. . . . Involving the adolescent in decisions doesnt mean that you are giving up your authority. It means acknowledging that the teenager is growing up and has the right to participate in decisions that affect his or her life.”
—Laurence Steinberg (20th century)
“Are cans constitutionally iffy? Whenever, that is, we say that we can do something, or could do something, or could have done something, is there an if in the offingsuppressed, it may be, but due nevertheless to appear when we set out our sentence in full or when we give an explanation of its meaning?”
—J.L. (John Langshaw)
“How strange a scene is this in which we are such shifting figures, pictures, shadows. The mystery of our existenceI have no faith in any attempted explanation of it. It is all a dark, unfathomed profound.”
—Rutherford Birchard Hayes (18221893)