Explanation
Formally, two sets A and B are disjoint if their intersection is the empty set, i.e. if
This definition extends to any collection of sets. A collection of sets is pairwise disjoint or mutually disjoint if, given any two sets in the collection, those two sets are disjoint.
Formally, let I be an index set, and for each i in I, let Ai be a set. Then the family of sets {Ai : i ∈ I} is pairwise disjoint if for any i and j in I with i ≠ j,
For example, the collection of sets { {1}, {2}, {3}, ... } is pairwise disjoint. If {Ai} is a pairwise disjoint collection (containing at least two sets), then clearly its intersection is empty:
However, the converse is not true: the intersection of the collection {{1, 2}, {2, 3}, {3, 1}} is empty, but the collection is not pairwise disjoint. In fact, there are no two disjoint sets in this collection.
A partition of a set X is any collection of non-empty subsets {Ai : i ∈ I} of X such that {Ai} are pairwise disjoint and
Read more about this topic: Disjoint Sets
Famous quotes containing the word explanation:
“There is no explanation for evil. It must be looked upon as a necessary part of the order of the universe. To ignore it is childish, to bewail it senseless.”
—W. Somerset Maugham (18741965)
“My companion assumes to know my mood and habit of thought, and we go on from explanation to explanation, until all is said that words can, and we leave matters just as they were at first, because of that vicious assumption.”
—Ralph Waldo Emerson (18031882)
“Auden, MacNeice, Day Lewis, I have read them all,
Hoping against hope to hear the authentic call . . .
And know the explanation I must pass is this
MYou cannot light a match on a crumbling wall.”
—Hugh MacDiarmid (18921978)