Discrete Hartley Transform - Definition

Definition

Formally, the discrete Hartley transform is a linear, invertible function H : Rn -> Rn (where R denotes the set of real numbers). The N real numbers x0, ...., xN-1 are transformed into the N real numbers H0, ..., HN-1 according to the formula

H_k = \sum_{n=0}^{N-1} x_n \left
\quad \quad k = 0, \dots, N-1 .

The combination is sometimes denoted, and should be contrasted with the that appears in the DFT definition (where i is the imaginary unit).

As with the DFT, the overall scale factor in front of the transform and the sign of the sine term are a matter of convention. Although these conventions occasionally vary between authors, they do not affect the essential properties of the transform.

Read more about this topic:  Discrete Hartley Transform

Famous quotes containing the word definition:

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)