Definition
Formally, the discrete Hartley transform is a linear, invertible function H : Rn -> Rn (where R denotes the set of real numbers). The N real numbers x0, ...., xN-1 are transformed into the N real numbers H0, ..., HN-1 according to the formula
.
The combination is sometimes denoted, and should be contrasted with the that appears in the DFT definition (where i is the imaginary unit).
As with the DFT, the overall scale factor in front of the transform and the sign of the sine term are a matter of convention. Although these conventions occasionally vary between authors, they do not affect the essential properties of the transform.
Read more about this topic: Discrete Hartley Transform
Famous quotes containing the word definition:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)