Direct Sum of Modules - Internal Direct Sum

Internal Direct Sum

See also: Internal direct product

Suppose M is some R-module, and Mi is a submodule of M for every i in I. If every x in M can be written in one and only one way as a sum of finitely many elements of the Mi, then we say that M is the internal direct sum of the submodules Mi (Halmos 1974, §18). In this case, M is naturally isomorphic to the (external) direct sum of the Mi as defined above (Adamson 1972, p.61).

A submodule N of M is a direct summand of M if there exists some other submodule N′ of M such that M is the internal direct sum of N and N′. In this case, N and N′ are complementary subspaces.

Read more about this topic:  Direct Sum Of Modules

Famous quotes containing the words internal, direct and/or sum:

    You will see Coleridge—he who sits obscure
    In the exceeding lustre and the pure
    Intense irradiation of a mind,
    Which, with its own internal lightning blind,
    Flags wearily through darkness and despair—
    A cloud-encircled meteor of the air,
    A hooded eagle among blinking owls.
    Percy Bysshe Shelley (1792–1822)

    Science is a system of statements based on direct experience, and controlled by experimental verification. Verification in science is not, however, of single statements but of the entire system or a sub-system of such statements.
    Rudolf Carnap (1891–1970)

    To help, to continually help and share, that is the sum of all knowledge; that is the meaning of art.
    Eleonora Duse (1859–1924)