Internal Direct Sum
See also: Internal direct productSuppose M is some R-module, and Mi is a submodule of M for every i in I. If every x in M can be written in one and only one way as a sum of finitely many elements of the Mi, then we say that M is the internal direct sum of the submodules Mi (Halmos 1974, §18). In this case, M is naturally isomorphic to the (external) direct sum of the Mi as defined above (Adamson 1972, p.61).
A submodule N of M is a direct summand of M if there exists some other submodule N′ of M such that M is the internal direct sum of N and N′. In this case, N and N′ are complementary subspaces.
Read more about this topic: Direct Sum Of Modules
Famous quotes containing the words internal, direct and/or sum:
“A State, in idea, is the opposite of a Church. A State regards classes, and not individuals; and it estimates classes, not by internal merit, but external accidents, as property, birth, etc. But a church does the reverse of this, and disregards all external accidents, and looks at men as individual persons, allowing no gradations of ranks, but such as greater or less wisdom, learning, and holiness ought to confer. A Church is, therefore, in idea, the only pure democracy.”
—Samuel Taylor Coleridge (17721834)
“Authority and power are two different things: power is the force by means of which you can oblige others to obey you. Authority is the right to direct and command, to be listened to or obeyed by others. Authority requests power. Power without authority is tyranny.”
—Jacques Maritain (18821973)
“Genius is no more than childhood recaptured at will, childhood equipped now with mans physical means to express itself, and with the analytical mind that enables it to bring order into the sum of experience, involuntarily amassed.”
—Charles Baudelaire (18211867)