Direct Sum - Direct Sum of Abelian Groups

The direct sum of abelian groups is a prototypical example of a direct sum. Given two abelian groups (A, ∗) and (B, ·), their direct sum AB is the same as their direct product, i.e. its underlying set is the Cartesian product A × B with the group operation ○ given componentwise:

(a1, b1) ○ (a2, b2) = (a1a2, b1 · b2).

This definition generalizes to direct sums of finitely many abelian groups.

For an infinite family of abelian groups Ai for iI, the direct sum

is a proper subgroup of the direct product. It consists of the elements such that ai is the identity element of Ai for all but finitely many i.

In this case, the direct sum is indeed the coproduct in the category of abelian groups.

Read more about this topic:  Direct Sum

Famous quotes containing the words direct, sum and/or groups:

    A fact is a proposition of which the verification by an appeal to the primary sources of our knowledge or to experience is direct and simple. A theory, on the other hand, if true, has all the characteristics of a fact except that its verification is possible only by indirect, remote, and difficult means.
    Chauncey Wright (1830–1875)

    The history of literature—take the net result of Tiraboshi, Warton, or Schlegel,—is a sum of a very few ideas, and of very few original tales,—all the rest being variation of these.
    Ralph Waldo Emerson (1803–1882)

    Women over fifty already form one of the largest groups in the population structure of the western world. As long as they like themselves, they will not be an oppressed minority. In order to like themselves they must reject trivialization by others of who and what they are. A grown woman should not have to masquerade as a girl in order to remain in the land of the living.
    Germaine Greer (b. 1939)