The direct sum of abelian groups is a prototypical example of a direct sum. Given two abelian groups (A, ∗) and (B, ·), their direct sum A ⊕ B is the same as their direct product, i.e. its underlying set is the Cartesian product A × B with the group operation ○ given componentwise:
- (a1, b1) ○ (a2, b2) = (a1 ∗ a2, b1 · b2).
This definition generalizes to direct sums of finitely many abelian groups.
For an infinite family of abelian groups Ai for i ∈ I, the direct sum
is a proper subgroup of the direct product. It consists of the elements such that ai is the identity element of Ai for all but finitely many i.
In this case, the direct sum is indeed the coproduct in the category of abelian groups.
Read more about this topic: Direct Sum
Famous quotes containing the words direct, sum and/or groups:
“Pleasure is the rock which most young people split upon; they launch out with crowded sails in quest of it, but without a compass to direct their course, or reason sufficient to steer the vessel; for want of which, pain and shame, instead of pleasure, are the returns of their voyage.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“Never is a historic deed already completed when it is done but always only when it is handed down to posterity. What we call history by no means represents the sum total of all significant deeds.... World history ... only comprises that tiny lighted sector which chanced to be placed in the spotlight by poetic or scholarly depictions.”
—Stefan Zweig (18811942)
“As in political revolutions, so in paradigm choicethere is no standard higher than the assent of the relevant community. To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists.”
—Thomas S. Kuhn (b. 1922)