The direct sum of abelian groups is a prototypical example of a direct sum. Given two abelian groups (A, ∗) and (B, ·), their direct sum A ⊕ B is the same as their direct product, i.e. its underlying set is the Cartesian product A × B with the group operation ○ given componentwise:
- (a1, b1) ○ (a2, b2) = (a1 ∗ a2, b1 · b2).
This definition generalizes to direct sums of finitely many abelian groups.
For an infinite family of abelian groups Ai for i ∈ I, the direct sum
is a proper subgroup of the direct product. It consists of the elements such that ai is the identity element of Ai for all but finitely many i.
In this case, the direct sum is indeed the coproduct in the category of abelian groups.
Read more about this topic: Direct Sum
Famous quotes containing the words direct, sum and/or groups:
“Of course it is of no use to direct our steps to the woods, if they do not carry us thither. I am alarmed when it happens that I have walked a mile into the woods bodily, without getting there in spirit.... What business have I in the woods, if I am thinking of something out of the woods?”
—Henry David Thoreau (18171862)
“The sum and substance of female education in America, as in England, is training women to consider marriage as the sole object in life, and to pretend that they do not think so.”
—Harriet Martineau (18021876)
“Writers and politicians are natural rivals. Both groups try to make the world in their own images; they fight for the same territory.”
—Salman Rushdie (b. 1947)