Dirac String

In physics, a Dirac string is a fictitious one-dimensional curve in space, conceived of by the physicist Paul Dirac, stretching between two Dirac magnetic monopoles with opposite magnetic charges, or from one magnetic monopole out to infinity. The gauge potential cannot be defined on the Dirac string, but it is defined everywhere else. The Dirac string acts as the solenoid in the Aharonov-Bohm effect, and the requirement that the position of the Dirac string should not be observable implies the Dirac quantization rule: the product of a magnetic charge and an electric charge must always be an integer multiple of . The magnetic flux running along the interior of the string maintains the validity of Maxwell's equations. If Maxwell equations are modified to allow magnetic charges at the fundamental level then the magnetic monopoles are Dirac monopoles no longer and do not require attached Dirac strings.

Read more about Dirac String:  Details

Famous quotes containing the word string:

    A culture may be conceived as a network of beliefs and purposes in which any string in the net pulls and is pulled by the others, thus perpetually changing the configuration of the whole. If the cultural element called morals takes on a new shape, we must ask what other strings have pulled it out of line. It cannot be one solitary string, nor even the strings nearby, for the network is three-dimensional at least.
    Jacques Barzun (b. 1907)