Dirac Spinor - Four-spinor For Anti-particles

Four-spinor For Anti-particles

Anti-particles having positive energy are defined as particles having negative energy and propagating backward in time. Hence changing the sign of and in the four-spinor for particles will give the four-spinor for anti-particles:

 v(\vec{p},s) = \sqrt{E+m}
\begin{bmatrix}
\frac{\vec{\sigma} \cdot \vec{p} }{E+m} \chi^{(s)}\\
\chi^{(s)}
\end{bmatrix} \,

Here we choose the solutions. Explicitly,

v(\vec{p}, 1) = \sqrt{E+m} \begin{bmatrix}
\frac{p_1 - i p_2}{E+m} \\
\frac{-p_3}{E+m} \\
0\\
1
\end{bmatrix} \quad \mathrm{and} \quad
v(\vec{p}, 2) = \sqrt{E+m} \begin{bmatrix}
\frac{p_3}{E+m} \\
\frac{p_1 + i p_2}{E+m} \\
1\\
0\\
\end{bmatrix}

Read more about this topic:  Dirac Spinor