Dirac Delta Function - Applications To Probability Theory

Applications To Probability Theory

In probability theory and statistics, the Dirac delta function is often used to represent a discrete distribution, or a partially discrete, partially continuous distribution, using a probability density function (which is normally used to represent fully continuous distributions). For example, the probability density function ƒ(x) of a discrete distribution consisting of points, with corresponding probabilities, can be written as

As another example, consider a distribution which 6/10 of the time returns a standard normal distribution, and 4/10 of the time returns exactly the value 3.5 (i.e. a partly continuous, partly discrete mixture distribution). The density function of this distribution can be written as

The delta function is also used in a completely different way to represent the local time of a diffusion process (like Brownian motion). The local time of a stochastic process B(t) is given by

and represents the amount of time that the process spends at the point x in the range of the process. More precisely, in one dimension this integral can be written

where is the indicator function of the interval .

Read more about this topic:  Dirac Delta Function

Famous quotes containing the words probability and/or theory:

    The source of Pyrrhonism comes from failing to distinguish between a demonstration, a proof and a probability. A demonstration supposes that the contradictory idea is impossible; a proof of fact is where all the reasons lead to belief, without there being any pretext for doubt; a probability is where the reasons for belief are stronger than those for doubting.
    Andrew Michael Ramsay (1686–1743)

    The great tragedy of science—the slaying of a beautiful theory by an ugly fact.
    Thomas Henry Huxley (1825–1895)