Examples of Diophantine Equations
In the following Diophantine equations, x, y, and z are the unknowns, the other letters being given are constants. | |
This is a linear Diophantine equation (see the section "Linear Diophantine equations" below). | |
For n = 2 there are infinitely many solutions (x,y,z): the Pythagorean triples. For larger integer values of n, Fermat's Last Theorem states there are no positive integer solutions (x, y, z). | |
(Pell's equation) which is named after the English mathematician John Pell. It was studied by Brahmagupta in the 7th century, as well as by Fermat in the 17th century. | |
The Erdős–Straus conjecture states that, for every positive integer n ≥ 2, there exists a solution in x, y, and z, all as positive integers. Although not usually stated in polynomial form, this example is equivalent to the polynomial equation 4xyz = yzn + xzn + xyn = n(yz + xz + xy). |
Read more about this topic: Diophantine Equation
Famous quotes containing the words examples of and/or examples:
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
Related Subjects
Related Phrases
Related Words