Uniform Distribution
Another topic that has seen a thorough development is the theory of uniform distribution mod 1. Take a sequence a1, a2, ... of real numbers and consider their fractional parts. That is, more abstractly, look at the sequence in R/Z, which is a circle. For any interval I on the circle we look at the proportion of the sequence's elements that lie in it, up to some integer N, and compare it to the proportion of the circumference occupied by I. Uniform distribution means that in the limit, as N grows, the proportion of hits on the interval tends to the 'expected' value. Hermann Weyl proved a basic result showing that this was equivalent to bounds for exponential sums formed from the sequence. This showed that Diophantine approximation results were closely related to the general problem of cancellation in exponential sums, which occurs throughout analytic number theory in the bounding of error terms.
Related to uniform distribution is the topic of irregularities of distribution, which is of a combinatorial nature.
Read more about this topic: Diophantine Approximation
Famous quotes containing the words uniform and/or distribution:
“An accent mark, perhaps, instead of a whole western accenta point of punctuation rather than a uniform twang. That is how it should be worn: as a quiet point of character reference, an apt phrase of sartorial allusionmacho, sotto voce.”
—Phil Patton (b. 1953)
“In this distribution of functions, the scholar is the delegated intellect. In the right state, he is, Man Thinking. In the degenerate state, when the victim of society, he tends to become a mere thinker, or, still worse, the parrot of other mens thinking.”
—Ralph Waldo Emerson (18031882)