Diophantine Approximation - Uniform Distribution

Uniform Distribution

Another topic that has seen a thorough development is the theory of uniform distribution mod 1. Take a sequence a1, a2, ... of real numbers and consider their fractional parts. That is, more abstractly, look at the sequence in R/Z, which is a circle. For any interval I on the circle we look at the proportion of the sequence's elements that lie in it, up to some integer N, and compare it to the proportion of the circumference occupied by I. Uniform distribution means that in the limit, as N grows, the proportion of hits on the interval tends to the 'expected' value. Hermann Weyl proved a basic result showing that this was equivalent to bounds for exponential sums formed from the sequence. This showed that Diophantine approximation results were closely related to the general problem of cancellation in exponential sums, which occurs throughout analytic number theory in the bounding of error terms.

Related to uniform distribution is the topic of irregularities of distribution, which is of a combinatorial nature.

Read more about this topic:  Diophantine Approximation

Famous quotes containing the words uniform and/or distribution:

    When a uniform exercise of kindness to prisoners on our part has been returned by as uniform severity on the part of our enemies, you must excuse me for saying it is high time, by other lessons, to teach respect to the dictates of humanity; in such a case, retaliation becomes an act of benevolence.
    Thomas Jefferson (1743–1826)

    There is the illusion of time, which is very deep; who has disposed of it? Mor come to the conviction that what seems the succession of thought is only the distribution of wholes into causal series.
    Ralph Waldo Emerson (1803–1882)