Uniform Distribution
Another topic that has seen a thorough development is the theory of uniform distribution mod 1. Take a sequence a1, a2, ... of real numbers and consider their fractional parts. That is, more abstractly, look at the sequence in R/Z, which is a circle. For any interval I on the circle we look at the proportion of the sequence's elements that lie in it, up to some integer N, and compare it to the proportion of the circumference occupied by I. Uniform distribution means that in the limit, as N grows, the proportion of hits on the interval tends to the 'expected' value. Hermann Weyl proved a basic result showing that this was equivalent to bounds for exponential sums formed from the sequence. This showed that Diophantine approximation results were closely related to the general problem of cancellation in exponential sums, which occurs throughout analytic number theory in the bounding of error terms.
Related to uniform distribution is the topic of irregularities of distribution, which is of a combinatorial nature.
Read more about this topic: Diophantine Approximation
Famous quotes containing the words uniform and/or distribution:
“Odors from decaying food wafting through the air when the door is opened, colorful mold growing between a wet gym uniform and the damp carpet underneath, and the complete supply of bath towels scattered throughout the bedroom can become wonderful opportunities to help your teenager learn once again that the art of living in a community requires compromise, negotiation, and consensus.”
—Barbara Coloroso (20th century)
“The question for the country now is how to secure a more equal distribution of property among the people. There can be no republican institutions with vast masses of property permanently in a few hands, and large masses of voters without property.... Let no man get by inheritance, or by will, more than will produce at four per cent interest an income ... of fifteen thousand dollars] per year, or an estate of five hundred thousand dollars.”
—Rutherford Birchard Hayes (18221893)