Diophantine Approximation - Best Diophantine Approximations of A Real Number

Best Diophantine Approximations of A Real Number

Given a real number α, there are two ways to define a best Diophantine approximation of α. For the first definition, the rational number p/q is a best Diophantine approximation of α if

for every rational number p'/q' such that 0< q'q.

For the second definition, the above inequality is replaced by

A best approximation for the second definition is also a best approximation for the first one, but the converse is false.

The theory of continued fractions allows us to compute the best approximations of a real number: for the second definition, they are the convergents of its expression as a regular continued fraction. For the first definition, one has to consider also the semiconvergents.

For example, the constant e = 2.718281828459045235... has the (regular) continued fraction representation

Its best approximations for the second definition are

while, for the first definition, they are

3, \tfrac{5}{2}, \tfrac{8}{3}, \tfrac{11}{4}, \tfrac{19}{7}, \tfrac{30}{11},
\tfrac{49}{18}, \tfrac{68}{25}, \tfrac{87}{32}, \tfrac{106}{39}, \ldots\, .

Read more about this topic:  Diophantine Approximation

Famous quotes containing the words real and/or number:

    A cynic might conclude that the real purpose of the $500 million-a-year implant business is the implantation of fat in the bellies and rumps of underemployed plastic surgeons.
    Barbara Ehrenreich (b. 1941)

    I will not adopt that ungenerous and impolitic custom so common with novel writers, of degrading by their contemptuous censure the very performances, to the number of which they are themselves adding—joining with their greatest enemies in bestowing the harshest epithets on such works, and scarcely ever permitting them to be read by their own heroine, who, if she accidentally take up a novel, is sure to turn over its insipid leaves with disgust.
    Jane Austen (1775–1817)