Best Diophantine Approximations of A Real Number
Given a real number α, there are two ways to define a best Diophantine approximation of α. For the first definition, the rational number p/q is a best Diophantine approximation of α if
for every rational number p'/q' such that 0< q' ≤ q.
For the second definition, the above inequality is replaced by
A best approximation for the second definition is also a best approximation for the first one, but the converse is false.
The theory of continued fractions allows us to compute the best approximations of a real number: for the second definition, they are the convergents of its expression as a regular continued fraction. For the first definition, one has to consider also the semiconvergents.
For example, the constant e = 2.718281828459045235... has the (regular) continued fraction representation
Its best approximations for the second definition are
while, for the first definition, they are
Read more about this topic: Diophantine Approximation
Famous quotes containing the words real and/or number:
“Im not making light of prayers here, but of so-called school prayer, which bears as much resemblance to real spiritual experience as that freeze-dried astronaut food bears to a nice standing rib roast. From what I remember of praying in school, it was almost an insult to God, a rote exercise in moving your mouth while daydreaming or checking out the cutest boy in the seventh grade that was a far, far cry from soul-searching.”
—Anna Quindlen (b. 1952)
“Strange goings on! Jones did it slowly, deliberately, in the bathroom, with a knife, at midnight. What he did was butter a piece of toast. We are too familiar with the language of action to notice at first an anomaly: the it of Jones did it slowly, deliberately,... seems to refer to some entity, presumably an action, that is then characterized in a number of ways.”
—Donald Davidson (b. 1917)