Diophantine Approximation - Best Diophantine Approximations of A Real Number

Best Diophantine Approximations of A Real Number

Given a real number α, there are two ways to define a best Diophantine approximation of α. For the first definition, the rational number p/q is a best Diophantine approximation of α if

for every rational number p'/q' such that 0< q'q.

For the second definition, the above inequality is replaced by

A best approximation for the second definition is also a best approximation for the first one, but the converse is false.

The theory of continued fractions allows us to compute the best approximations of a real number: for the second definition, they are the convergents of its expression as a regular continued fraction. For the first definition, one has to consider also the semiconvergents.

For example, the constant e = 2.718281828459045235... has the (regular) continued fraction representation

Its best approximations for the second definition are

while, for the first definition, they are

3, \tfrac{5}{2}, \tfrac{8}{3}, \tfrac{11}{4}, \tfrac{19}{7}, \tfrac{30}{11},
\tfrac{49}{18}, \tfrac{68}{25}, \tfrac{87}{32}, \tfrac{106}{39}, \ldots\, .

Read more about this topic:  Diophantine Approximation

Famous quotes containing the words real and/or number:

    A real fox calls sour not only those grapes that he cannot reach but also those that he has reached and taken away from others.
    Friedrich Nietzsche (1844–1900)

    A child’s self-image is more like a scrapbook than a single snapshot. As the child matures, the number and variety of images in that scrapbook may be far more important than any individual picture pasted inside it.
    Lawrence Kutner (20th century)