In dimensional analysis, a dimensionless quantity or quantity of dimension one is a quantity without an associated physical dimension. It is thus a "pure" number, and as such always has a dimension of 1. Dimensionless quantities are widely used in mathematics, physics, engineering, economics, and in everyday life (such as in counting). Numerous well-known quantities, such as π, e, and φ, are dimensionless. By contrast, non-dimensionless quantities are measured in units of length, area, time, etc.
Dimensionless quantities are often defined as products or ratios of quantities that are not dimensionless, but whose dimensions cancel out when their powers are multiplied. This is the case, for instance, with the engineering strain, a measure of deformation. It is defined as change in length over initial length but, since these quantities both have dimensions L (length), the result is a dimensionless quantity.
Read more about Dimensionless Quantity: Properties, Buckingham π Theorem, Standards Efforts, Examples, List of Dimensionless Quantities, Dimensionless Physical Constants
Famous quotes containing the word quantity:
“The Great Society is a place where every child can find knowledge to enrich his mind and to enlarge his talents.... It is a place where the city of man serves not only the needs of the body and the demands of commerce but the desire for beauty and the hunger for community.... It is a place where men are more concerned with the quality of their goals than the quantity of their goods.”
—Lyndon Baines Johnson (19081973)