Generalizations
One can see a vector space as a particular case of a matroid, and in the latter there is a well-defined notion of dimension. The length of a module and the rank of an abelian group both have several properties similar to the dimension of vector spaces.
The Krull dimension of a commutative ring, named after Wolfgang Krull (1899–1971), is defined to be the maximal number of strict inclusions in an increasing chain of prime ideals in the ring.
Read more about this topic: Dimension (vector Space)