Dimension Theorem For Vector Spaces - Proof

Proof

Assume that { ai: iI } and { bj: jJ } are both bases, with the cardinality of I bigger than the cardinality of J. From this assumption we will derive a contradiction.

Read more about this topic:  Dimension Theorem For Vector Spaces

Famous quotes containing the word proof:

    The insatiable thirst for everything which lies beyond, and which life reveals, is the most living proof of our immortality.
    Charles Baudelaire (1821–1867)

    From whichever angle one looks at it, the application of racial theories remains a striking proof of the lowered demands of public opinion upon the purity of critical judgment.
    Johan Huizinga (1872–1945)

    There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.
    Herman Melville (1819–1891)