Dimension of An Algebraic Variety - Definition By The Transcendence Degree

Definition By The Transcendence Degree

For an algebraic variety V over a field K, the dimension of V is the transcendence degree over K of the function field K(V) of all rational functions on V, with values in K.

For the function field even to be defined, V here must be an irreducible algebraic set; in which case the function field (for an affine variety) is just the field of fractions of the coordinate ring of V. Using polynomial equations, it is easy to define sets that have 'mixed dimension': a union of a curve and a plane in space, for example. These fail to be irreducible.

Read more about this topic:  Dimension Of An Algebraic Variety

Famous quotes containing the words definition and/or degree:

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)

    To the degree that respect for professors ... has risen in our society, respect for writers has fallen. Today the professorial intellect has achieved its highest public standing since the world began, while writers have come to be called “men of letters,” by which is meant people who are prevented by some obscure infirmity from becoming competent journalists.
    Robert Musil (1880–1942)