Diffuse Reflection - Mechanism

Mechanism

Diffuse reflection from solids is generally not due to surface roughness. A flat surface is indeed required to give specular reflection, but it does not prevent diffuse reflection. A piece of highly polished white marble remains white; no amount of polishing will turn it into a mirror. Polishing produces some specular reflection, but the remaining light continues to be diffusely reflected.

The most general mechanism by which a surface gives diffuse reflection does not involve exactly the surface: most of the light is contributed by scattering centers beneath the surface, as illustrated in Figure 1 at right. If one were to imagine that the figure represents snow, and that the polygons are its (transparent) ice crystallites, an impinging ray is partially reflected (a few percent) by the first particle, enters in it, is again reflected by the interface with the second particle, enters in it, impinges on the third, and so on, generating a series of "primary" scattered rays in random directions, which, in turn, through the same mechanism, generate a large number of "secondary" scattered rays, which generate "tertiary" rays... All these rays walk through the snow crystallytes, which do not absorb light, until they arrive at the surface and exit in random directions. The result is that the light that was sent out is returned in all directions, so that snow is white despite being made of transparent material (ice crystals).

For simplicity, "reflections" are spoken of here, but more generally the interface between the small particles that constitute many materials is irregular on a scale comparable with light wavelength, so diffuse light is generated at each interface, rather than a single reflected ray, but the story can be told the same way.

This mechanism is very general, because almost all common materials are made of "small things" held together. Mineral materials are generally polycrystalline: one can describe them as made of a 3-D mosaic of small, irregularly shaped defective crystals. Organic materials are usually composed of fibers or cells, with their membranes and their complex internal structure. And each interface, inhomogeneity or imperfection can deviate, reflect or scatter light, reproducing the above mechanism.

Few materials don't follow it: among them metals, which do not allow light to enter; gases, liquids; glass and transparent plastics (which have a liquid-like amorphous microscopic structure); single crystals, such as some gems or a salt crystal; and some very special materials, such as the tissues which make the cornea and the lens of an eye. These materials can reflect diffusely, however, if their surface is microscopically rough, like in a frost glass (figure 2), or, of course, if their homogeneous structure deteriorates, as in the eye lens.

A surface may also exhibit both specular and diffuse reflection, as is the case, for example, of glossy paints as used in home painting, which give also a fraction of specular reflection, while matte paints give almost exclusively diffuse reflection.

Read more about this topic:  Diffuse Reflection

Famous quotes containing the word mechanism:

    I’ve never known a Philadelphian who wasn’t a downright “character;” possibly a defense mechanism resulting from the dullness of their native habitat.
    Anita Loos (1888–1981)

    When one of us dies of cancer, loses her mind, or commits suicide, we must not blame her for her inability to survive an ongoing political mechanism bent on the destruction of that human being. Sanity remains defined simply by the ability to cope with insane conditions.
    Ana Castillo (b. 1953)

    Life is an offensive, directed against the repetitious mechanism of the Universe.
    Alfred North Whitehead (1861–1947)