Coordinate-independent Description
In differential geometry and algebraic geometry it is often convenient to have a coordinate-independent description of differential operators between two vector bundles. Let E and F be two vector bundles over a differentiable manifold M. An R-linear mapping of sections P : Γ(E) → Γ(F) is said to be a kth-order linear differential operator if it factors through the jet bundle Jk(E). In other words, there exists a linear mapping of vector bundles
such that
where jk: Γ(E) → Γ(Jk(E)) is the prolongation that associates to any section of E its k-jet.
This just means that for a given sections s of E, the value of P(s) at a point x ∈ M is fully determined by the kth-order infinitesimal behavior of s in x. In particular this implies that P(s)(x) is determined by the germ of s in x, which is expressed by saying that differential operators are local. A foundational result is the Peetre theorem showing that the converse is also true: any (linear) local operator is differential.
Read more about this topic: Differential Operator
Famous quotes containing the word description:
“The great object in life is Sensationto feel that we exist, even though in pain; it is this craving void which drives us to gaming, to battle, to travel, to intemperate but keenly felt pursuits of every description whose principal attraction is the agitation inseparable from their accomplishment.”
—George Gordon Noel Byron (17881824)