Intrinsic Definitions
Let M be a smooth manifold. A differential form of degree k is a smooth section of the kth exterior power of the cotangent bundle of M. At any point p∈M, a k-form β defines an alternating multilinear map
(with k factors of TpM in the product), where TpM is the tangent space to M at p. Equivalently, β is a totally antisymmetric covariant tensor field of rank k.
The set of all differential k-forms on a manifold M is a vector space, often denoted Ωk(M).
For example, a differential 1-form α assigns to each point p∈M a linear functional αp on TpM. In the presence of an inner product on TpM (induced by a Riemannian metric on M), αp may be represented as the inner product with a tangent vector Xp. Differential 1-forms are sometimes called covariant vector fields, covector fields, or "dual vector fields", particularly within physics.
Read more about this topic: Differential Form
Famous quotes containing the words intrinsic and/or definitions:
“Three elements go to make up an idea. The first is its intrinsic quality as a feeling. The second is the energy with which it affects other ideas, an energy which is infinite in the here-and-nowness of immediate sensation, finite and relative in the recency of the past. The third element is the tendency of an idea to bring along other ideas with it.”
—Charles Sanders Peirce (18391914)
“What I do not like about our definitions of genius is that there is in them nothing of the day of judgment, nothing of resounding through eternity and nothing of the footsteps of the Almighty.”
—G.C. (Georg Christoph)