Intrinsic Definitions
Let M be a smooth manifold. A differential form of degree k is a smooth section of the kth exterior power of the cotangent bundle of M. At any point p∈M, a k-form β defines an alternating multilinear map
(with k factors of TpM in the product), where TpM is the tangent space to M at p. Equivalently, β is a totally antisymmetric covariant tensor field of rank k.
The set of all differential k-forms on a manifold M is a vector space, often denoted Ωk(M).
For example, a differential 1-form α assigns to each point p∈M a linear functional αp on TpM. In the presence of an inner product on TpM (induced by a Riemannian metric on M), αp may be represented as the inner product with a tangent vector Xp. Differential 1-forms are sometimes called covariant vector fields, covector fields, or "dual vector fields", particularly within physics.
Read more about this topic: Differential Form
Famous quotes containing the words intrinsic and/or definitions:
“There is no intrinsic worth in money but what is alterable with the times, and whether a guinea goes for twenty pounds or for a shilling, it is ... the labour of the poor and not the high and low value that is set on gold or silver, which all the comforts of life must arise from.”
—Bernard Mandeville (16701733)
“What I do not like about our definitions of genius is that there is in them nothing of the day of judgment, nothing of resounding through eternity and nothing of the footsteps of the Almighty.”
—G.C. (Georg Christoph)