Differential Form - Integration

Integration

Differential forms of degree k are integrated over k dimensional chains. If k = 0, this is just evaluation of functions at points. Other values of k = 1, 2, 3, ... correspond to line integrals, surface integrals, volume integrals etc. Simply, a chain parametrizes a domain of integration as a collection of cells (images of cubes or other domains D) that are patched together; to integrate, one pulls back the form on each cell of the chain to a form on the cube (or other domain) and integrates there, which is just integration of a function on as the pulled back form is simply a multiple of the volume form For example, given a path integrating a form on the path is simply pulling back the form to a function on (properly, to a form ) and integrating the function on the interval.

Let

be a differential form and S a differentiable k-manifold over which we wish to integrate, where S has the parameterization

for u in the parameter domain D. Then (Rudin 1976) defines the integral of the differential form over S as

where

is the determinant of the Jacobian. The Jacobian exists because S is differentiable.

More generally, a -form can be integrated over an -dimensional submanifold, for, to obtain a -form. This comes up, for example, in defining the pushforward of a differential form by a smooth map by attempting to integrate over the fibers of .

Read more about this topic:  Differential Form

Famous quotes containing the word integration:

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)

    The only phenomenon with which writing has always been concomitant is the creation of cities and empires, that is the integration of large numbers of individuals into a political system, and their grading into castes or classes.... It seems to have favored the exploitation of human beings rather than their enlightenment.
    Claude Lévi-Strauss (b. 1908)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)