Differentiable Manifold - History

History

The emergence of differential geometry as a distinct discipline is generally credited to Carl Friedrich Gauss and Bernhard Riemann. Riemann first described manifolds in his famous habilitation lecture before the faculty at Göttingen. He motivated the idea of a manifold by an intuitive process of varying a given object in a new direction, and presciently described the role of coordinate systems and charts in subsequent formal developments:

Having constructed the notion of a manifoldness of n dimensions, and found that its true character consists in the property that the determination of position in it may be reduced to n determinations of magnitude, ...– B. Riemann

The works of physicists such as James Clerk Maxwell, and mathematicians Gregorio Ricci-Curbastro and Tullio Levi-Civita led to the development of tensor analysis and the notion of covariance, which identifies an intrinsic geometric property as one that is invariant with respect to coordinate transformations. These ideas found a key application in Einstein's theory of general relativity and its underlying equivalence principle. A modern definition of a 2-dimensional manifold was given by Hermann Weyl in his 1913 book on Riemann surfaces. The widely accepted general definition of a manifold in terms of an atlas is due to Hassler Whitney.

Read more about this topic:  Differentiable Manifold

Famous quotes containing the word history:

    We have need of history in its entirety, not to fall back into it, but to see if we can escape from it.
    José Ortega Y Gasset (1883–1955)

    The history of American politics is littered with bodies of people who took so pure a position that they had no clout at all.
    Ben C. Bradlee (b. 1921)

    Racism is an ism to which everyone in the world today is exposed; for or against, we must take sides. And the history of the future will differ according to the decision which we make.
    Ruth Benedict (1887–1948)