Differentiability in Higher Dimensions
See also: Multivariable calculusA function f: Rm → Rn is said to be differentiable at a point x0 if there exists a linear map J: Rm → Rn such that
If a function is differentiable at x0, then all of the partial derivatives must exist at x0, in which case the linear map J is given by the Jacobian matrix. A similar formulation of the higher-dimensional derivative is provided by the fundamental increment lemma found in single-variable calculus.
Note that existence of the partial derivatives (or even all of the directional derivatives) does not guarantee that a function is differentiable at a point. For example, the function ƒ: R2 → R defined by
is not differentiable at (0, 0), but all of the partial derivatives and directional derivatives exist at this point. For a continuous example, the function
is not differentiable at (0, 0), but again all of the partial derivatives and directional derivatives exist.
It is known that if the partial derivatives of a function all exist and are continuous in a neighborhood of a point, then the function must be differentiable at that point, and is in fact of class C1.
Read more about this topic: Differentiable Function
Famous quotes containing the words higher and/or dimensions:
“To expect to increase prices and then to maintain them at a higher level by means of a plan which must of necessity increase production while decreasing consumption is to fly in the face of an economic law as well established as any law of nature.”
—Calvin Coolidge (18721933)
“Why is it that many contemporary male thinkers, especially men of color, repudiate the imperialist legacy of Columbus but affirm dimensions of that legacy by their refusal to repudiate patriarchy?”
—bell hooks (b. c. 1955)