Formal Statement
Let be the set of non-negative integers (natural numbers), let n be any fixed constant, and let be the set of -tuples of natural numbers. These tuples may be given a pointwise partial order, the product order, in which if and only if, for every, . The set of tuples that are greater than or equal to some particular tuple forms a positive orthant with its apex at the given tuple.
With this notation, Dickson's lemma may be stated in several equivalent forms:
- In every subset of, there are finitely many elements that are minimal elements of for the pointwise partial order
- In every infinite set of -tuples of natural numbers, there exist two tuples and such that, for every, .
- The partially ordered set is a well partial order.
- Every subset of may be covered by a finite set of positive orthants, whose apexes all belong to
Read more about this topic: Dickson's Lemma
Famous quotes containing the words formal and/or statement:
“The conviction that the best way to prepare children for a harsh, rapidly changing world is to introduce formal instruction at an early age is wrong. There is simply no evidence to support it, and considerable evidence against it. Starting children early academically has not worked in the past and is not working now.”
—David Elkind (20th century)
“The most distinct and beautiful statement of any truth must take at last the mathematical form.”
—Henry David Thoreau (18171862)