Diagonalizable Matrix - Characterisation

Characterisation

The fundamental fact about diagonalizable maps and matrices is expressed by the following:

  • An n-by-n matrix A over the field F is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to n, which is the case if and only if there exists a basis of Fn consisting of eigenvectors of A. If such a basis has been found, one can form the matrix P having these basis vectors as columns, and P−1AP will be a diagonal matrix. The diagonal entries of this matrix are the eigenvalues of A.
  • A linear map T: VV is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to dim(V), which is the case if and only if there exists a basis of V consisting of eigenvectors of T. With respect to such a basis, T will be represented by a diagonal matrix. The diagonal entries of this matrix are the eigenvalues of T.

Another characterization: A matrix or linear map is diagonalizable over the field F if and only if its minimal polynomial is a product of distinct linear factors over F. (Put in another way, a matrix is diagonalizable if and only if all of its elementary divisors are linear.)

The following sufficient (but not necessary) condition is often useful.

  • An n-by-n matrix A is diagonalizable over the field F if it has n distinct eigenvalues in F, i.e. if its characteristic polynomial has n distinct roots in F; however, the converse may be false. Let us consider
which has eigenvalues 1, 2, 2 (not all distinct) and is diagonalizable with diagonal form ( similar to A)
and change of basis matrix P
  • A linear map T: VV with n = dim(V) is diagonalizable if it has n distinct eigenvalues, i.e. if its characteristic polynomial has n distinct roots in F.

Let A be a matrix over F. If A is diagonalizable, then so is any power of it. Conversely, if A is invertible, F is algebraically closed, and An is diagonalizable for some n that is not an integer multiple of the characteristic of F, then A is diagonalizable. Proof: If is diagonalizable, then A is annihilated by some polynomial, which has no multiple root (since ) and is divided by the minimal polynomial of A.

As a rule of thumb, over C almost every matrix is diagonalizable. More precisely: the set of complex n-by-n matrices that are not diagonalizable over C, considered as a subset of Cn×n, has Lebesgue measure zero. One can also say that the diagonalizable matrices form a dense subset with respect to the Zariski topology: the complement lies inside the set where the discriminant of the characteristic polynomial vanishes, which is a hypersurface. From that follows also density in the usual (strong) topology given by a norm. The same is not true over R.

The Jordan–Chevalley decomposition expresses an operator as the sum of its semisimple (i.e., diagonalizable) part and its nilpotent part. Hence, a matrix is diagonalizable if and only if its nilpotent part is zero. Put in another way, a matrix is diagonalizable if each block in its Jordan form has no nilpotent part; i.e., one-by-one matrix.

Read more about this topic:  Diagonalizable Matrix