Diagonal Lemma - Proof

Proof

Let f: NN be the function defined by:

f(#(θ)) = #(θ(#(θ))

for each T-formula θ in one free variable, and f(n) = 0 otherwise. The function f is computable, so there is a formula δ representing f in T. Thus for each formula θ, T proves

(∀y) ,

which is to say

(∀y) .

Now define the formula β(z) as:

β(z) = (∀y) ,

then

β(#(θ)) ⇔ (∀y) ,

which is to say

β(#(θ)) ⇔ ψ(#(θ(#(θ))))

Let φ be the sentence β(#(β)). Then we can prove in T that:

(*) φ ⇔ (∀y) ⇔ (∀y) .

Working in T, analyze two cases:
1. Assuming φ holds, substitute #(β(#(β)) for y in the rightmost formula in (*), and obtain:

(#(β(#(β)) = #(β(#(β))) → ψ(#(β(#(β))),

Since φ = β(#(β)), it follows that ψ(#(φ)) holds.
2. Conversely, assume that ψ(#(β(#(β)))) holds. Then the final formula in (*) must be true, and φ is also true.

Thus φ ↔ ψ(#(φ)) is provable in T, as desired.

Read more about this topic:  Diagonal Lemma

Famous quotes containing the word proof:

    War is a beastly business, it is true, but one proof we are human is our ability to learn, even from it, how better to exist.
    M.F.K. Fisher (1908–1992)

    He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,—it is only to be added, that, in that case, he knows them to be small.
    Herman Melville (1819–1891)

    If we view our children as stupid, naughty, disturbed, or guilty of their misdeeds, they will learn to behold themselves as foolish, faulty, or shameful specimens of humanity. They will regard us as judges from whom they wish to hide, and they will interpret everything we say as further proof of their unworthiness. If we view them as innocent, or at least merely ignorant, they will gain understanding from their experiences, and they will continue to regard us as wise partners.
    Polly Berrien Berends (20th century)