Definition
The deviance for a model M0, based on a dataset y, is defined as
Here denotes the fitted values of the parameters in the model M0, while denotes the fitted parameters for the "full model" (or "saturated model"): both sets of fitted values are implicitly functions of the observations y. Here the full model is a model with a parameter for every observation so that the data are fitted exactly. This expression is simply −2 times the log-likelihood ratio of the reduced model compared to the full model. The deviance is used to compare two models - in particular in the case of generalized linear models where it has a similar role to residual variance from ANOVA in linear models (RSS).
Suppose in the framework of the GLM, we have two nested models, M1 and M2. In particular, suppose that M1 contains the parameters in M2, and k additional parameters. Then, under the null hypothesis that M2 is the true model, the difference between the deviances for the two models follows an approximate chi-squared distribution with k-degrees of freedom.
Some usage of the term "deviance" can be confusing. According to Collett:
- "the quantity is sometimes referred to as a deviance. This is inappropriate, since unlike the deviance used in the context of generalized linear modelling, does not measure deviation from a model that is a perfect fit to the data."
Read more about this topic: Deviance (statistics)
Famous quotes containing the word definition:
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)