Deviance (statistics) - Definition

Definition

The deviance for a model M0, based on a dataset y, is defined as

Here denotes the fitted values of the parameters in the model M0, while denotes the fitted parameters for the "full model" (or "saturated model"): both sets of fitted values are implicitly functions of the observations y. Here the full model is a model with a parameter for every observation so that the data are fitted exactly. This expression is simply −2 times the log-likelihood ratio of the reduced model compared to the full model. The deviance is used to compare two models - in particular in the case of generalized linear models where it has a similar role to residual variance from ANOVA in linear models (RSS).

Suppose in the framework of the GLM, we have two nested models, M1 and M2. In particular, suppose that M1 contains the parameters in M2, and k additional parameters. Then, under the null hypothesis that M2 is the true model, the difference between the deviances for the two models follows an approximate chi-squared distribution with k-degrees of freedom.

Some usage of the term "deviance" can be confusing. According to Collett:

"the quantity is sometimes referred to as a deviance. This is inappropriate, since unlike the deviance used in the context of generalized linear modelling, does not measure deviation from a model that is a perfect fit to the data."

Read more about this topic:  Deviance (statistics)

Famous quotes containing the word definition:

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)