In mathematics, a developable surface (or torse: archaic) is a surface with zero Gaussian curvature. That is, it is a "surface" that can be flattened onto a plane without distortion (i.e. "stretching" or "compressing"). Conversely, it is a surface which can be made by transforming a plane (i.e. "folding", "bending", "rolling", "cutting" and/or "gluing"). In three dimensions all developable surfaces are ruled surfaces. There are developable surfaces in R4 which are not ruled.
Read more about Developable Surface: Particulars
Famous quotes containing the word surface:
“In the cold of Europe, under prudish northern fogs, except when slaughter is afoot, you only glimpse the crawling cruelty of your fellow men. But their rottenness rises to the surface as soon as they are tickled by the hideous fevers of the tropics.”
—Louis-Ferdinand Céline (18941961)