Developable Surface

In mathematics, a developable surface (or torse: archaic) is a surface with zero Gaussian curvature. That is, it is a "surface" that can be flattened onto a plane without distortion (i.e. "stretching" or "compressing"). Conversely, it is a surface which can be made by transforming a plane (i.e. "folding", "bending", "rolling", "cutting" and/or "gluing"). In three dimensions all developable surfaces are ruled surfaces. There are developable surfaces in R4 which are not ruled.

Read more about Developable Surface:  Particulars

Famous quotes containing the word surface:

    Voluptuaries, consumed by their senses, always begin by flinging themselves with a great display of frenzy into an abyss. But they survive, they come to the surface again. And they develop a routine of the abyss: “It’s four o’clock ... At five I have my abyss.”
    Colette [Sidonie Gabrielle Colette] (1873–1954)