Descent of Vector Bundles
The case of the construction of vector bundles from data on a disjoint union of topological spaces is a straightforward place to start.
Suppose X is a topological space covered by open sets Xi. Let Y be the disjoint union of the Xi, so that there is a natural mapping
- p : Y → X.
We think of Y as 'above' X, with the Xi projection 'down' onto X. With this language, descent implies a vector bundle on Y (so, a bundle given on each Xi), and our concern is to 'glue' those bundles Vi, to make a single bundle V on X. What we mean is that V should, when restricted to Xi, give back Vi, up to a bundle isomorphism.
The data needed is then this: on each overlap
- Xij,
intersection of Xi and Xj, we'll require mappings
- fij
to use to identify Vi and Vj there, fiber by fiber. Further the fij must satisfy conditions based on the reflexive, symmetric and transitive properties of an equivalence relation (gluing conditions). For example the composition
- fijofjk = fik
for transitivity (and choosing apt notation). The fii should be identity maps and hence the symmetry becomes invertibility of fij (so that it is fiberwise an isomorphism).
These are indeed standard conditions in fiber bundle theory (see transition function). One important application to note is change of fiber: if the fij are all you need to make a bundle, then there are many ways to make an associated bundle. That is, we can take essentially same fij, acting on various fibers.
Another major point is the relation with the chain rule: the discussion of the way there of constructing tensor fields can be summed up as 'once you learn to descend the tangent bundle, for which transitivity is the Jacobian chain rule, the rest is just 'naturality of tensor constructions'.
To move closer towards the abstract theory we need to interpret the disjoint union of the
- Xij
now as
- Y×XY,
the fiber product (here an equalizer) of two copies of the projection p. The bundles on the Xij that we must control are actually V′ and V", the pullbacks to the fiber of V via the two different projection maps to X.
Therefore by going to a more abstract level one can eliminate the combinatorial side (that is, leave out the indices) and get something that makes sense for p not of the special form of covering with which we began. This then allows a category theory approach: what remains to do is to re-express the gluing conditions.
Read more about this topic: Descent (category Theory)
Famous quotes containing the words descent and/or bundles:
“My life has been one long descent into respectability.”
—Mandy Rice-Davies (b. 1944)
“He bundles every forkful in its place,
And tags and numbers it for future reference,
So he can find and easily dislodge it
In the unloading. Silas does that well.
He takes it out in bunches like birds nests.”
—Robert Frost (18741963)