Relation To Pappus' Theorem
Pappus's hexagon theorem states that, if a hexagon AbCaBc is drawn in such a way that vertices a, b, and c lie on a line and vertices A, B, and C lie on a second line, then each two opposite sides of the hexagon lie on two lines that meet in a point and the three points constructed in this way are collinear. A plane in which Pappus's theorem is universally true is called Pappian. Hessenberg (1905) showed that Desargues's theorem can be deduced from three applications of Pappus's theorem (Coxeter 1969, 14.3).
The converse of this result is not true, that is, not all Desarguesian planes are Pappian. Satisfying Pappus's theorem universally is equivalent to having the underlying coordinate system be commutative. A plane defined over a non-commutative division ring (a division ring that is not a field) would therefore be Desarguesian but not Pappian. However, due to Wedderburn's theorem, which states that all finite division rings are fields, all finite Desarguesian planes are Pappian. There is no known, satisfactory geometric proof of this fact.
Read more about this topic: Desargues' Theorem
Famous quotes containing the words relation to, relation and/or theorem:
“We must get back into relation, vivid and nourishing relation to the cosmos and the universe. The way is through daily ritual, and is an affair of the individual and the household, a ritual of dawn and noon and sunset, the ritual of the kindling fire and pouring water, the ritual of the first breath, and the last.”
—D.H. (David Herbert)
“There is a constant in the average American imagination and taste, for which the past must be preserved and celebrated in full-scale authentic copy; a philosophy of immortality as duplication. It dominates the relation with the self, with the past, not infrequently with the present, always with History and, even, with the European tradition.”
—Umberto Eco (b. 1932)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)