Relation To Pappus' Theorem
Pappus's hexagon theorem states that, if a hexagon AbCaBc is drawn in such a way that vertices a, b, and c lie on a line and vertices A, B, and C lie on a second line, then each two opposite sides of the hexagon lie on two lines that meet in a point and the three points constructed in this way are collinear. A plane in which Pappus's theorem is universally true is called Pappian. Hessenberg (1905) showed that Desargues's theorem can be deduced from three applications of Pappus's theorem (Coxeter 1969, 14.3).
The converse of this result is not true, that is, not all Desarguesian planes are Pappian. Satisfying Pappus's theorem universally is equivalent to having the underlying coordinate system be commutative. A plane defined over a non-commutative division ring (a division ring that is not a field) would therefore be Desarguesian but not Pappian. However, due to Wedderburn's theorem, which states that all finite division rings are fields, all finite Desarguesian planes are Pappian. There is no known, satisfactory geometric proof of this fact.
Read more about this topic: Desargues' Theorem
Famous quotes containing the words relation to, relation and/or theorem:
“The proper study of mankind is man in his relation to his deity.”
—D.H. (David Herbert)
“There is undoubtedly something religious about it: everyone believes that they are special, that they are chosen, that they have a special relation with fate. Here is the test: you turn over card after card to see in which way that is true. If you can defy the odds, you may be saved. And when you are cleaned out, the last penny gone, you are enlightened at last, free perhaps, exhilarated like an ascetic by the falling away of the material world.”
—Andrei Codrescu (b. 1947)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)