Density of States - Dispersion Relations

Dispersion Relations

The kinetic energy of a particle depends on the magnitude and direction of the wave vector k, the properties of the particle and the environment in which the particle is moving. For example, the kinetic energy of an electron in a Fermi gas is given by

where m is the electron mass. The dispersion relation is a spherically symmetric parabola and it is continuously rising so the DOS can be calculated easily.

For longitudinal phonons in a string of atoms the dispersion relation of the kinetic energy in a 1-dimensional k-space, as shown in Figure 2, is given by

where is the oscillator frequency, the mass of the atoms, the inter-atomic force constant and inter-atomic spacing. For small values of the dispersion relation is rather linear:

When the energy is

With the transformation and small this relation can be transformed to

Read more about this topic:  Density Of States

Famous quotes containing the words dispersion and/or relations:

    The slogan offers a counterweight to the general dispersion of thought by holding it fast to a single, utterly succinct and unforgettable expression, one which usually inspires men to immediate action. It abolishes reflection: the slogan does not argue, it asserts and commands.
    Johan Huizinga (1872–1945)

    The land is the appointed remedy for whatever is false and fantastic in our culture. The continent we inhabit is to be physic and food for our mind, as well as our body. The land, with its tranquilizing, sanative influences, is to repair the errors of a scholastic and traditional education, and bring us to just relations with men and things.
    Ralph Waldo Emerson (1803–1882)