C*-algebraic Formulation of States
It is now generally accepted that the description of quantum mechanics in which all self-adjoint operators represent observables is untenable. For this reason, observables are identified to elements of an abstract C*-algebra A (that is one without a distinguished representation as an algebra of operators) and states are positive linear functionals on A. However, by using the GNS construction, we can recover Hilbert spaces which realize A as a subalgebra of operators.
Geometrically, a pure state on a C*-algebra A is a state which is an extreme point of the set of all states on A. By properties of the GNS construction these states correspond to irreducible representations of A.
The states of the C*-algebra of compact operators K(H) correspond exactly to the density operators, and therefore the pure states of K(H) are exactly the pure states in the sense of quantum mechanics.
The C*-algebraic formulation can be seen to include both classical and quantum systems. When the system is classical, the algebra of observables become an abelian C*-algebra. In that case the states become probability measures, as noted in the introduction.
Read more about this topic: Density Matrix
Famous quotes containing the words formulation and/or states:
“You do not mean by mystery what a Catholic does. You mean an interesting uncertainty: the uncertainty ceasing interest ceases also.... But a Catholic by mystery means an incomprehensible certainty: without certainty, without formulation there is no interest;... the clearer the formulation the greater the interest.”
—Gerard Manley Hopkins (18441889)
“I cannot say what poetry is; I know that our sufferings and our concentrated joy, our states of plunging far and dark and turning to come back to the worldso that the moment of intense turning seems still and universalall are here, in a music like the music of our time, like the hero and like the anonymous forgotten; and there is an exchange here in which our lives are met, and created.”
—Muriel Rukeyser (19131980)