Related Notions
A point x of a subset A of a topological space X is called a limit point of A (in X) if every neighbourhood of x also contains a point of A other than x itself, and an isolated point of A otherwise. A subset without isolated points is said to be dense-in-itself.
A subset A of a topological space X is called nowhere dense (in X) if there is no neighborhood in X on which A is dense. Equivalently, a subset of a topological space is nowhere dense if and only if the interior of its closure is empty. The interior of the complement of a nowhere dense set is always dense. The complement of a closed nowhere dense set is a dense open set. Given a topological space X, a subset A of X that can be expressed as the union of countably many nowhere dense subsets of X is called meagre. The rational numbers, while dense in the real numbers, are meagre as a subset of the reals.
A topological space with a countable dense subset is called separable. A topological space is a Baire space if and only if the intersection of countably many dense open sets is always dense. A topological space is called resolvable if it is the union of two disjoint dense subsets. More generally, a topological space is called κ-resolvable if it contains κ pairwise disjoint dense sets.
An embedding of a topological space X as a dense subset of a compact space is called a compactification of X.
A linear operator between topological vector spaces X and Y is said to be densely defined if its domain is a dense subset of X and if its range is contained within Y. See also continuous linear extension.
A topological space X is hyperconnected if and only if every nonempty open set is dense in X. A topological space is submaximal if and only if every dense subset is open.
Read more about this topic: Dense Set
Famous quotes containing the words related and/or notions:
“No being exists or can exist which is not related to space in some way. God is everywhere, created minds are somewhere, and body is in the space that it occupies; and whatever is neither everywhere nor anywhere does not exist. And hence it follows that space is an effect arising from the first existence of being, because when any being is postulated, space is postulated.”
—Isaac Newton (16421727)
“Hang ideas! They are tramps, vagabonds, knocking at the back- door of your mind, each taking a little of your substance, each carrying away some crumb of that belief in a few simple notions you must cling to if you want to live decently and would like to die easy!”
—Joseph Conrad (18571924)