Density in Metric Spaces
An alternative definition of dense set in the case of metric spaces is the following. When the topology of X is given by a metric, the closure of A in X is the union of A and the set of all limits of sequences of elements in A (its limit points),
Then A is dense in X if
Note that . If is a sequence of dense open sets in a complete metric space, X, then is also dense in X. This fact is one of the equivalent forms of the Baire category theorem.
Read more about this topic: Dense Set
Famous quotes containing the word spaces:
“In any case, raw aggression is thought to be the peculiar province of men, as nurturing is the peculiar province of women.... The psychologist Erik Erikson discovered that, while little girls playing with blocks generally create pleasant interior spaces and attractive entrances, little boys are inclined to pile up the blocks as high as they can and then watch them fall down: the contemplation of ruins, Erikson observes, is a masculine specialty.”
—Joyce Carol Oates (b. 1938)