In statistics, Deming regression, named after W. Edwards Deming, is an errors-in-variables model which tries to find the line of best fit for a two-dimensional dataset. It differs from the simple linear regression in that it accounts for errors in observations on both the x- and the y- axis. It is a special case of total least squares, which allows for any number of predictors and a more complicated error structure.
Deming regression is equivalent to the maximum likelihood estimation of an errors-in-variables model in which the errors for the two variables are assumed to be independent and normally distributed, and the ratio of their variances, denoted δ, is known. In practice, this ratio might be estimated from related data-sources; however the regression procedure takes no account for possible errors in estimating this ratio.
The Deming regression is only slightly more difficult to compute compared to the simple linear regression. Many software packages used in clinical chemistry, such as Analyse-it, EP Evaluator, MedCalc and S-PLUS offer Deming regression.
The model was originally introduced by Adcock (1878) who considered the case δ = 1, and then more generally by Kummell (1879) with arbitrary δ. However their ideas remained largely unnoticed for more than 50 years, until they were revived by Koopmans (1937) and later propagated even more by Deming (1943). The latter book became so popular in clinical chemistry and related fields that the method was even dubbed Deming regression in those fields.
Read more about Deming Regression: Specification, Solution, The Case of Equal Error Variances
Famous quotes containing the word deming:
“As deaths have accumulated I have begun to think of life and death as a set of balance scales. When one is young, the scale is heavily tipped toward the living. With the first death, the first consciousness of death, the counter scale begins to fall. Death by death, the scales shift weight until what was unthinkable becomes merely a matter of gravity and the fall into death becomes an easy step.”
—Alison Hawthorne Deming (b. 1946)