History
When ancient astronomers viewed the sky, they saw the Sun, Moon, and stars moving overhead in a regular fashion. They also saw the "wanderers" or "planetai" (our planets). The regularity in the motions of the wandering bodies suggested that their positions might be predictable.
The most obvious approach to the problem of predicting the motions of the heavenly bodies was simply to map their positions against the star field and then to fit mathematical functions to the changing positions.
The ancients worked from a geocentric perspective for the simple reason that the Earth was where they stood and observed the sky, and it is the sky which appears to move while the ground seems still and steady underfoot. Some Greek astronomers (e.g., Aristarchus of Samos) speculated that the planets (Earth included) orbited the Sun, but the optics (and the specific mathematics – Newton's Law of Gravitation for example) necessary to provide data that would convincingly support the heliocentric model did not exist in Ptolemy's time and would not come around for over fifteen hundred years after his death. Furthermore, Aristotelian Physics was not designed with these sorts of calculations in mind, and Aristotle's philosophy regarding the heavens was entirely at odds with the concept of heliocentrism. It was not until Galileo Galilei observed the moons of Jupiter on January 7, 1610, and the phases of Venus in September, 1610 that the heliocentric model began to receive broad support among astronomers, who also came to accept the notion that the planets are individual worlds orbiting the Sun (that is, that Earth is a planet and is one among several.) Johannes Kepler was able to formulate his famous three laws of planetary motion, which described the orbits of the planets in our solar system with incredible accuracy; Kepler's three laws are still taught today in University physics and astronomy classes, and the wording of these laws has not changed since Kepler first formulated them four hundred years ago.
The apparent motion of the heavenly bodies with respect to time is cyclical in nature. Apollonius of Perga realized that this cyclical variation could be represented visually by circles, or epicycles (mini circular orbits), revolving on larger circular orbits, or deferents. Hipparchus calculated the required orbits. Deferents and epicycles in the ancient models did not represent orbits in the modern sense.
Claudius Ptolemy refined the deferent/epicycle concept and introduced the equant as a mechanism for accounting for velocity variations in the motions of the planets. The empirical methodology he developed proved to be extraordinarily accurate for its day and was still in use at the time of Copernicus and Kepler.
Owen Gingerich describes a planetary conjunction that occurred in 1504 that was apparently observed by Copernicus. In notes bound with his copy of the Alfonsine Tables, Copernicus commented that "Mars surpasses the numbers by more than two degrees. Saturn is surpassed by the numbers by one and a half degrees." Using modern computer programs, Gingerich discovered that, at the time of the conjunction, Saturn indeed lagged behind the tables by a degree and a half and Mars led the predictions by nearly two degrees. Moreover, he found that Ptolemy's predictions for Jupiter at the same time were quite accurate. Copernicus and his contemporaries were therefore using Ptolemy's methods and finding them trustworthy well over a thousand years after Ptolemy's original work was published.
When Copernicus transformed Earth-based observations to heliocentric coordinates, he was confronted with an entirely new problem. The Sun-centered positions displayed a cyclical motion with respect to time but without retrograde loops in the case of the outer planets. In principle, the heliocentric motion was simpler but with new subtleties due to the yet-to-be-discovered elliptical shape of the orbits. Another complication was caused by a problem that Copernicus never solved: correctly accounting for the motion of the Earth in the coordinate transformation. In keeping with past practice, Copernicus used the deferent/epicycle model in his theory but his epicycles were small and were called "epicyclets".
In the Ptolemaic system the models for each of the planets were different and so it was with Copernicus' initial models. As he worked through the mathematics, however, Copernicus discovered that his models could be combined in a unified system. Furthermore, if they were scaled so that Earth's orbit was the same in all of them, the ordering of the planets we recognize today easily followed from the math. Mercury orbited closest to the Sun and the rest of the planets fell into place in order outward, arranged in distance by their periods of revolution.
Although Copernicus' models reduced the magnitude of the epicycles considerably, whether they were simpler than Ptolemy's is moot. Copernicus eliminated Ptolemy's somewhat-maligned equant but at a cost of additional epicycles. Various 16th-century books based on Ptolemy and Copernicus use about equal numbers of epicycles. The idea that Copernicus used only 34 circles in his system comes from his own statement in a preliminary unpublished sketch called the Commentariolus. By the time he published De revolutionibus orbium coelestium, he had added more circles. Counting the total number is difficult, but estimates are that he created a system just as complicated, or even more so. Koestler, in his history of man's vision of the universe, equates the number of epicycles used by Keplar at 48. The popular total of about 80 circles for the Ptolemaic system seems to have appeared in 1898. It may have been inspired by the non-Ptolemaic system of Girolamo Fracastoro, who used either 77 or 79 orbs in his system inspired by Eudoxus of Cnidus. Copernicus in his works exaggerated the number of epicycles used in the Ptolemic system; although original counts ranged to 80 circles, by Copernicus's time the Ptolemic system had been updated by Peurbach towards the similar number of 40; hence Copernicus effectively replaced the problem of retrograde with further epicycles.
Copernicus' theory was at least as accurate as Ptolemy's but never achieved the stature and recognition of Ptolemy's theory. What was needed was Kepler's elliptical theory, not published till 1609. Copernicus' work provided explanations for phenomena like retrograde motion, but really didn't prove that the planets actually orbited the Sun.
Ptolemy's and Copernicus' theories proved the durability and adaptability of the deferent/epicycle device for representing planetary motion. The deferent/epicycle models worked as well as they did because of the extraordinary orbital stability of the solar system. Either theory could be used today and might still be in use had Isaac Newton not invented Physics and the Calculus.
The first planetary model without any epicycles was that of Ibn Bajjah (Avempace) in 12th century Andalusian Spain, but epicycles were not eliminated in Europe until the 17th century, when Johannes Kepler's model of elliptical orbits gradually replaced Copernicus' model based on perfect circles.
Newtonian or Classical Mechanics eliminated the need for deferent/epicycle methods altogether and produced theories many times more powerful. By treating the Sun and planets as point masses and using Newton's law of universal gravitation, equations of motion were derived that could be solved by various means to compute predictions of planetary orbital velocities and positions. Simple two-body problems, for example, can be solved analytically. More-complex n-body problems require numerical methods for solution.
The power of Newtonian mechanics to solve problems in orbital mechanics is illustrated by the discovery of Neptune. Analysis of observed perturbations in the orbit of Uranus produced estimates of the suspected planet's position within a degree of where it was found. This could not have been accomplished with deferent/epicycle methods. Still, Newton in 1702 published Theory of the Moon's Motion which employed an epicycle and remained in use in China into the ninetheenth century. Subsequent tables based on Newton's Theory could have approached arcminute accuracy.
Read more about this topic: Deferent And Epicycle
Famous quotes containing the word history:
“I cannot be much pleased without an appearance of truth; at least of possibilityI wish the history to be natural though the sentiments are refined; and the characters to be probable, though their behaviour is excelling.”
—Frances Burney (17521840)
“History does nothing; it does not possess immense riches, it does not fight battles. It is men, real, living, who do all this.... It is not history which uses men as a means of achievingas if it were an individual personits own ends. History is nothing but the activity of men in pursuit of their ends.”
—Karl Marx (18181883)
“Books of natural history aim commonly to be hasty schedules, or inventories of Gods property, by some clerk. They do not in the least teach the divine view of nature, but the popular view, or rather the popular method of studying nature, and make haste to conduct the persevering pupil only into that dilemma where the professors always dwell.”
—Henry David Thoreau (18171862)