Deep Space Network - DSN and The Apollo Program

DSN and The Apollo Program

Although normally tasked with tracking unmanned spacecraft, the Deep Space Network (DSN) also contributed to the communication and tracking of Apollo missions to the Moon, although primary responsibility was held by the Manned Space Flight Network. The DSN designed the MSFN stations for lunar communication and provided a second antenna at each MSFN site (the MSFN sites were near the DSN sites for just this reason). Two antennas at each site were needed both for redundancy and because the beam widths of the large antennas needed were too small to encompass both the lunar orbiter and the lander at the same time. DSN also supplied some larger antennas as needed, in particular for television broadcasts from the Moon, and emergency communications such as Apollo 13.

From a NASA report describing how the DSN and MSFN cooperated for Apollo:

Another critical step in the evolution of the Apollo Network came in 1965 with the advent of the DSN Wing concept. Originally, the participation of DSN 26-m antennas during an Apollo Mission was to be limited to a backup role. This was one reason why the MSFN 26-m sites were collocated with the DSN sites at Goldstone, Madrid, and Canberra. However, the presence of two, well-separated spacecraft during lunar operations stimulated the rethinking of the tracking and communication problem. One thought was to add a dual S-band RF system to each of the three 26-m MSGN antennas, leaving the nearby DSN 26-m antennas still in a backup role. Calculations showed, though, that a 26-m antenna pattern centered on the landed Lunar Module would suffer a 9-to-12 db loss at the lunar horizon, making tracking and data acquisition of the orbiting Command Service Module difficult, perhaps impossible. It made sense to use both the MSFN and DSN antennas simultaneously during the all-important lunar operations. JPL was naturally reluctant to compromise the objectives of its many unmanned spacecraft by turning three of its DSN stations over to the MSFN for long periods. How could the goals of both Apollo and deep space exploration be achieved without building a third 26-m antenna at each of the three sites or undercutting planetary science missions? The solution came in early 1965 at a meeting at NASA Headquarters, when Eberhardt Rechtin suggested what is now known as the "wing concept". The wing approach involves constructing a new section or "wing" to the main building at each of the three involved DSN sites. The wing would include a MSFN control room and the necessary interface equipment to accomplish the following:
  1. Permit tracking and two-way data transfer with either spacecraft during lunar operations.
  2. Permit tracking and two-way data transfer with the combined spacecraft during the flight to the Moon.
  3. Provide backup for the collocated MSFN site passive track (spacecraft to ground RF links) of the Apollo spacecraft during trans-lunar and trans-earth phases.

With this arrangement, the DSN station could be quickly switched from a deep-space mission to Apollo and back again. GSFC personnel would operate the MSFN equipment completely independently of DSN personnel. Deep space missions would not be compromised nearly as much as if the entire station's equipment and personnel were turned over to Apollo for several weeks.

The details of this cooperation and operation are available in a two-volume technical report from JPL.

Read more about this topic:  Deep Space Network

Famous quotes containing the words apollo and/or program:

    blue bead on the wick,
    there’s that in me that
    burns and chills, blackening
    my heart with its soot,
    I think sometimes not Apollo heard me
    but a different god.
    Denise Levertov (b. 1923)

    When Paul Bunyan’s loggers roofed an Oregon bunkhouse with shakes, fog was so thick that they shingled forty feet into space before discovering they had passed the last rafter.
    State of Oregon, U.S. public relief program (1935-1943)