Example of Conversion
To illustrate how one can convert a natural deduction to the axiomatic form of proof, we apply it to the tautology Q→((Q→R)→R). In practice, it is usually enough to know that we could do this. We normally use the natural-deductive form in place of the much longer axiomatic proof.
First, we write a proof using a natural-deduction like method:
-
- Q 1. hypothesis
- Q→R 2. hypothesis
- R 3. modus ponens 1,2
- (Q→R)→R 4. deduction from 2 to 3
- Q 1. hypothesis
- Q→((Q→R)→R) 5. deduction from 1 to 4 QED
Second, we convert the inner deduction to an axiomatic proof:
- (Q→R)→(Q→R) 1. theorem schema (A→A)
- ((Q→R)→(Q→R))→(((Q→R)→Q)→((Q→R)→R)) 2. axiom 2
- ((Q→R)→Q)→((Q→R)→R) 3. modus ponens 1,2
- Q→((Q→R)→Q) 4. axiom 1
- Q 5. hypothesis
- (Q→R)→Q 6. modus ponens 5,4
- (Q→R)→R 7. modus ponens 6,3
- Q→((Q→R)→R) 8. deduction from 5 to 7 QED
Third, we convert the outer deduction to an axiomatic proof:
- (Q→R)→(Q→R) 1. theorem schema (A→A)
- ((Q→R)→(Q→R))→(((Q→R)→Q)→((Q→R)→R)) 2. axiom 2
- ((Q→R)→Q)→((Q→R)→R) 3. modus ponens 1,2
- Q→((Q→R)→Q) 4. axiom 1
- → 5. axiom 1
- Q→(((Q→R)→Q)→((Q→R)→R)) 6. modus ponens 3,5
- →(→) 7. axiom 2
- → 8. modus ponens 6,7
- Q→((Q→R)→R)) 9. modus ponens 4,8 QED
These three steps can be stated succinctly using the Curry–Howard correspondence:
- first, in lambda calculus, the function f = λa. λb. b a has type q → (q → r) → r
- second, by lambda elimination on b, f = λa. s i (k a)
- third, by lambda elimination on a, f = s (k (s i)) k
Read more about this topic: Deduction Theorem
Famous quotes containing the word conversion:
“The conversion of a savage to Christianity is the conversion of Christianity to savagery.”
—George Bernard Shaw (18561950)
Related Phrases
Related Words