Dedekind Group

In group theory, a Dedekind group is a group G such that every subgroup of G is normal. All abelian groups are Dedekind groups. A non-abelian Dedekind group is called a Hamiltonian group.

The most familiar (and smallest) example of a Hamiltonian group is the quaternion group of order 8, denoted by Q8. It can be shown that every Hamiltonian group is a direct product of the form G = Q8 × B × D, where B is the direct sum of some number of copies of the cyclic group C2, and D is a periodic abelian group with all elements of odd order.

Dedekind groups are named after Richard Dedekind, who investigated them in (Dedekind 1897), proving a form of the above structure theorem (for finite groups). He named the non-abelian ones after William Rowan Hamilton, the discoverer of quaternions.

In 1898 George Miller delineated the structure of a Hamiltonian group in terms of its order and that of its subgroups. For instance, he shows "a Hamilton group of order 2a has 22a −6 quaternion groups as subgroups". In 2005 Horvat et al. used this structure to count the number of Hamiltonian groups of any order n = 2eo where o is an odd integer. When e ≤ 3 then there are no Hamiltonian groups of order n, otherwise there are the same number as there are Abelian groups of order o.

Famous quotes containing the word group:

    Once it was a boat, quite wooden
    and with no business, no salt water under it
    and in need of some paint. It was no more
    than a group of boards. But you hoisted her, rigged her.
    She’s been elected.
    Anne Sexton (1928–1974)