De Sitter Space - Definition

Definition

De Sitter space can be defined as a submanifold of a Minkowski space of one higher dimension. Take Minkowski space R1,n with the standard metric:

De Sitter space is the submanifold described by the hyperboloid of one sheet

where is some positive constant with dimensions of length. The metric on de Sitter space is the metric induced from the ambient Minkowski metric. The induced metric is nondegenerate and has Lorentzian signature. (Note that if one replaces with in the above definition, one obtains a hyperboloid of two sheets. The induced metric in this case is positive-definite, and each sheet is a copy of hyperbolic n-space.)

De Sitter space can also be defined as the quotient O(1,n)/O(1,n−1) of two indefinite orthogonal groups, which shows that it is a non-Riemannian symmetric space.

Topologically, de Sitter space is R × Sn−1 (so that if n ≥ 3 then de Sitter space is simply-connected).

Read more about this topic:  De Sitter Space

Famous quotes containing the word definition:

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)