De Moivre's Formula - Failure For Non-integer Powers

Failure For Non-integer Powers

De Moivre's formula does not, in general, hold for non-integer powers. Non-integer powers of a complex number can have many different values, see failure of power and logarithm identities. However there is a generalization that the right-hand side expression is one possible value of the power.

The derivation of de Moivre's formula above involves a complex number to the power n. When the power is not an integer, the result is multiple-valued, for example, when n = ½ then:

For x = 0 the formula gives 1½ = 1
For x = 2π the formula gives 1½ = −1.

Since the angles 0 and 2π are the same this would give two different values for the same expression. The values 1 and −1 are however both square roots of 1 as the generalization asserts.

No such problem occurs with Euler's formula since there is no identification of different values of its exponent. Euler's formula involves a complex power of a positive real number and this always has a defined value. The corresponding expressions are:

Read more about this topic:  De Moivre's Formula

Famous quotes containing the words failure and/or powers:

    The moment a mere numerical superiority by either states or voters in this country proceeds to ignore the needs and desires of the minority, and for their own selfish purpose or advancement, hamper or oppress that minority, or debar them in any way from equal privileges and equal rights—that moment will mark the failure of our constitutional system.
    Franklin D. Roosevelt (1882–1945)

    Great abilites are not requisite for an Historian; for in historical composition, all the greatest powers of the human mind are quiescent. He has facts ready to his hand; so there is no exercise of invention. Imagination is not required in any degree; only about as much as is used in the lowest kinds of poetry. Some penetration, accuracy, and colouring, will fit a man for the task, if he can give the application which is necessary.
    Samuel Johnson (1709–1784)