Schlicht Functions
The normalizations
- a0 = 0 and a1 = 1
mean that
- f(0) = 0 and f '(0) = 1;
this can always be assured by a linear fractional transformation: starting with an arbitrary injective holomorphic function g defined on the open unit disk and setting
Such functions g are of interest because they appear in the Riemann mapping theorem.
A family of schlicht functions are the rotated Koebe functions
with α a complex number of absolute value 1. If f is a schlicht function and |an| = n for some n ≥ 2, then f is a rotated Koebe function.
The condition of de Branges' theorem is not sufficient to show the function is schlicht, as the function
shows: it is holomorphic on the unit disc and satisfies |an|≤n for all n, but it is not injective since f(−1/2 + z) = f(−1/2 − z).
Read more about this topic: De Branges's Theorem
Famous quotes containing the word functions:
“If photography is allowed to stand in for art in some of its functions it will soon supplant or corrupt it completely thanks to the natural support it will find in the stupidity of the multitude. It must return to its real task, which is to be the servant of the sciences and the arts, but the very humble servant, like printing and shorthand which have neither created nor supplanted literature.”
—Charles Baudelaire (18211867)