DDR SDRAM
Double data rate synchronous dynamic random-access memory (DDR SDRAM) is a class of memory integrated circuits used in computers. DDR SDRAM (sometimes referred to as DDR1 SDRAM) has been superseded by DDR2 SDRAM and DDR3 SDRAM, neither of which is either forward or backward compatible with DDR SDRAM, meaning that DDR2 or DDR3 memory modules will not work in DDR-equipped motherboards, and vice versa.
Compared to single data rate (SDR) SDRAM, the DDR SDRAM interface makes higher transfer rates possible by more strict control of the timing of the electrical data and clock signals. Implementations often have to use schemes such as phase-locked loops and self-calibration to reach the required timing accuracy. The interface uses double pumping (transferring data on both the rising and falling edges of the clock signal) to lower the clock frequency. One advantage of keeping the clock frequency down is that it reduces the signal integrity requirements on the circuit board connecting the memory to the controller. The name "double data rate" refers to the fact that a DDR SDRAM with a certain clock frequency achieves nearly twice the bandwidth of a SDR SDRAM running at the same clock frequency, due to this double pumping.
With data being transferred 64 bits at a time, DDR SDRAM gives a transfer rate of (memory bus clock rate) × 2 (for dual rate) × 64 (number of bits transferred) / 8 (number of bits/byte). Thus, with a bus frequency of 100 MHz, DDR SDRAM gives a maximum transfer rate of 1600 MB/s.
"Beginning in 1996 and concluding in June 2000, JEDEC developed the DDR (Double Data Rate) SDRAM specification (JESD79)." JEDEC has set standards for data rates of DDR SDRAM, divided into two parts. The first specification is for memory chips, and the second is for memory modules.
Read more about DDR SDRAM: Variations, MDDR